
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

THEMATIC CYCLE 1: 

SOFTWARE TESTING 



2 

 

TABLE OF CONTENTS 

1. Goal of manual testing .................................................................................................. 5 

2. Introduction to Software testing and Software development ........................................ 5 
What is software testing: ....................................................................................................... 5 
Software testing types: ........................................................................................................... 6 
Testing Methods: .................................................................................................................... 6 
Testing Approaches: ............................................................................................................... 6 
Testing Levels:......................................................................................................................... 7 
Types of Black Box Testing: .................................................................................................... 8 
Testing Artifacts: ..................................................................................................................... 8 
What is Software Development Life Cycle (SDLC)? ................................................................ 9 
A typical Software Development Life Cycle (SDLC) consists of the following phases: ......... 10 
Types of Software Development Life Cycle Models: ............................................................ 11 
Other related Software Development LifeCycle models are: .............................................. 12 

3. Software Testing as a Career Path (Skills, Salary, Growth) ........................................... 13 

4. Software Testing Principles: Learn with Examples ....................................................... 16 
The 7 basic Principles of software testing: ........................................................................ 17 

5. Manual Testing Tutorial for Beginners: Concepts, Types, Tool ..................................... 20 
Manual Testing Process: ................................................................................................... 20 

What is Software Testing Life Cycle (STLC) ........................................................................... 22 
Difference between defect, bug, error and failure .............................................................. 29 
Common types of Software Testing: .................................................................................... 30 

6. Automation testing tutorial: what is, process, benefits & tools; ................................ 37 
Software test automation overview ..................................................................................... 37 
Software test automation strategy ...................................................................................... 37 
Software test automation and it’s return of investment (roi) ............................................. 38 
Test cases to automate ......................................................................................................... 38 
Test cases not to automate .................................................................................................. 39 
Automated Testing Process/ How do we automate? .......................................................... 39 

Example: ............................................................................................................................ 41 
Framework for Automation .................................................................................................. 41 
How to Choose an Automation Tool? .................................................................................. 42 
Automation Testing Tools ..................................................................................................... 43 

7. Automation Testing Vs. Manual Testing: What's the Difference? .............................. 45 
What are the different test design techniques? .................................................................. 45 

Static Test Design Techniques ........................................................................................... 45 
Dynamic Test Design Techniques ...................................................................................... 46 

8. What is regression testing? Definition, tools, method, and example ......................... 47 
Regression Test Overview .................................................................................................... 47 

Exercise:............................................................................................................................. 47 
When To Perform This Test? ................................................................................................ 48 
Why The Regression Test? .................................................................................................... 50 



3 

 

Types Of Regression Testing: ................................................................................................ 50 
How Much Regression Is Required? ..................................................................................... 51 
What Do We Do In Regression Check? ................................................................................. 51 
Regression Testing Techniques ............................................................................................ 52 
How To Select A Regression Test Suite? ............................................................................... 52 
How To Perform Regression Testing? .................................................................................. 52 

Exercise 1: .......................................................................................................................... 53 
Exersice 2: .......................................................................................................................... 53 

Basic Steps to Perform Regression Tests .............................................................................. 55 
Regression In Agile ................................................................................................................ 56 
Regression Of GUI Application ............................................................................................. 57 

Regression Test Plan Template (TOC) ............................................................................... 57 
Exercise:............................................................................................................................. 59 
Example: ............................................................................................................................ 59 
Example: ............................................................................................................................ 60 

What is the difference between Regression And Retesting................................................. 60 
Exercise 1: .......................................................................................................................... 61 
Example 1: ......................................................................................................................... 61 

9. What is a Test Scenario? ........................................................................................... 62 
Exercise 1: .......................................................................................................................... 62 

Why do we write Test Scenario? .......................................................................................... 62 
Example 1: Best practices of creating a Test Scenario ...................................................... 63 

What is a Test Case? ............................................................................................................. 63 
Examples: .......................................................................................................................... 64 

Why do we write Test Cases? ............................................................................................... 64 
Example 1: Best practices of Creating Test cases ............................................................. 64 

10. How to write a Test Case ........................................................................................... 66 
ExercIse: Case template 1 ................................................................................................. 68 
Exercise: Case template 2 ................................................................................................. 69 

List of Web Application Testing Example Test Cases/scenarios. .......................................... 71 
Exercise: General Test Scenarios ....................................................................................... 71 
Exercise: GUI And Usability Test Scenarios ....................................................................... 72 
Exercise: Test Scenarios For Filter Criteria ........................................................................ 73 
Exercise: Test Scenarios For Result Grid ........................................................................... 73 
Exercise: Test Scenarios For A Window ............................................................................ 74 
Exercise: Database Testing Test Scenarios ........................................................................ 74 
Exercise: Test Scenarios For Image Upload Functionality ................................................. 75 
Exercise: Test Scenarios For Sending Emails ..................................................................... 75 
Exercise: Test Scenarios For Excel Export Functionality ................................................... 76 
Exercise: Performance Testing Test Scenarios .................................................................. 76 
Exercise: Security Testing Test Scenarios .......................................................................... 77 

11. Software Test Estimation Techniques: step by step guide .......................................... 77 
Brief Description Of The Test Estimation Process ................................................................ 77 
The Basic Prerequisites Of The Test Estimation Process ...................................................... 78 
How and where we use these techniques: .......................................................................... 79 
Details Of The Test Point Estimation Technique .................................................................. 79 

Test Estimation Exercise:................................................................................................... 81 



4 

 

Use Case Point Estimation Method ...................................................................................... 82 
Exercise:............................................................................................................................. 83 

Work-Phase Breakdown Technique ..................................................................................... 83 
Exercise:............................................................................................................................. 84 

Factors Affecting Software Test Estimation, and General Tips to Estimate Accurately: ..... 84 

12. How to write a test plan ............................................................................................ 85 
Test Plan Types ..................................................................................................................... 86 

Test Plan Template ............................................................................................................ 86 
Test Plan Guidelines .......................................................................................................... 88 
Example Test plan: ............................................................................................................ 88 

13. Aditional Exersizes .................................................................................................. 103 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 

 

1. GOAL OF MANUAL TESTING 

 

Manual Testing is a process carried out to find defects. In this method the tester plays an 
important role as end user and verifies all features of the application to ensure the behavior 
of the application. The Manual Testing is very basic type of testing which helps to find bugs 
in the application under test.  

It is preliminary testing, must be carried out prior to start automating the test cases and also 
needs to check the feasibility of automation testing. The Test Plan is created & followed by 
the tester to ensure the comprehensiveness of testing while executing the test cases 
manually without using automation testing tool. 

The main Goal of Manual Testing is to make sure that the application under test is defect 
free and software application is working as per the requirement specification document. 

There are different stages for Manual Testing 
like Unit testing, Integration testing, System 
testing and User Acceptance testing, etc. 

To start the testing process a Test Plan 
document must be created by test lead which 
describes the detailed and systematic 
approach to testing a software application. 
Basically, the Test Plan typically includes a 
complete understanding of what the ultimate 
workflow will be. To ensure the completeness 
of testing (100% test coverage) Test Cases or 
Test Scenarios are created. Manual Testing 
Concepts also include Exploratory testing as 
testers explore the software to identify errors in it. 

After the testing is started the designed test cases or test scenarios are executed and any 
differences between actual & expected results are reported as defects. Once the reported 
defects are fixed, the testers will retest the defects to make sure they are fixed.  

 

2. INTRODUCTION TO SOFTWARE TESTING AND SOFTWARE DEVELOPMENT 

WHAT IS SOFTWARE TESTING:  

Software testing is a process, to evaluate the functionality of a software application with an 
intent to find whether the developed software met the specified requirements or not and to 
identify the defects to ensure that the product is defect-free in order to produce the quality 
product. 



6 

 

Definition: Software Testing Definition according to ANSI/IEEE 1059 standard – A process of 
analyzing a software item to detect the differences between existing and required 
conditions (i.e., defects) and to evaluate the features of the software item. 

SOFTWARE TESTING TYPES: 

Manual Testing: Manual testing is the process of testing software by hand to learn 
more about it, to find what is and isn’t working. This usually includes verifying all the 
features specified in requirements documents, but often also includes the testers trying the 
software with the perspective of their end user’s in mind. Manual test plans vary from fully 
scripted test cases, giving testers detailed steps and expected results, through to high-level 
guides that steer exploratory testing sessions. There are lots of sophisticated tools on the 
market to help with manual testing, but if you want a simple and flexible place to start, take 
a look at “Testpad” online. 

Automation Testing: Automation testing is the process of testing the software using 
an automation tool to find the defects. In this process, testers execute the test scripts and 
generate the test results automatically by using automation tools. Some of the famous 
automation testing tools for functional testing are QTP/UFT and Selenium. 

TESTING METHODS: 

Static Testing: It is also known as 
Verification in Software Testing. Verification is 
a static method of checking documents and 
files. Verification is the process, to ensure 
whether we are building the product right i.e., 
to verify the requirements which we have and 
to verify whether we are developing the 
product accordingly or not. 

Activities involved here are Inspections, 
Reviews, Walkthroughs. 

Dynamic Testing: It is also known as Validation in Software Testing. Validation is a 
dynamic process of testing the real product. Validation is the process, whether we are 
building the right product i.e., to validate the product which we have developed is right or 
not. 

Activities involved in this is Testing the software application. 

TESTING APPROACHES: 

There are three main types of software testing approaches: 

1. White Box Testing 

2. Black Box Testing 



7 

 

3. Grey Box Testing 

White Box Testing: It is also called as Glass Box, Clear Box, Structural Testing. White 
Box Testing is based on application’s internal code structure. In white-box testing, an 
internal perspective of the system, as well as programming skills, are used to design test 
cases. This testing is usually done at the unit level. 

Black Box Testing: It is also called as Behavioral/Specification-Based/Input-Output 
Testing. Black Box Testing is a software testing method in which testers evaluate the 
functionality of the software under test without looking at the internal code structure. 

Grey Box Testing: Grey box is the combination of both White Box and Black Box 
Testing. The tester who works on this type of testing needs to have access to design 
documents. This helps to create better test cases in this process. 

 

 

TESTING LEVELS: 

 

1. Unit Testing 

2. Integration Testing 

3. System Testing 

4. Acceptance Testing 

 

Unit Testing: Unit Testing is done to check whether the individual modules of the 
source code are working properly. i.e. testing each and every unit of the application 
separately by the developer in the developer’s environment. It is AKA Module Testing or 
Component Testing.  

Integration Testing: Integration Testing is the process of testing the connectivity or 
data transfer between a couple of Unit tested modules. It is AKA I&T Testing or String 
Testing. It is subdivided into the Top-Down Approach, Bottom-Up Approach, and Sandwich 
Approach (Combination of Top-Down and Bottom-Up).  

System Testing (end to end testing): It’s a black box testing. Testing the fully 
integrated application this is also called as an end to end scenario testing. To ensure that the 
software works in all intended target systems. Verify thorough testing of every input in the 
application to check for desired outputs. Testing of the user’s experiences with the 
application. 

Acceptance Testing: To obtain customer sign-off so that software can be delivered 
and payments received. Types of Acceptance Testing are Alpha, Beta & Gamma Testing. 

 



8 

 

TYPES OF BLACK BOX TESTING: 

1. Functionality Testing 

2. Non-functionality Testing 

Functional testing: In simple words, what the system actually does is functional 
testing. To verify that each function of the software application behaves as specified in the 
requirement document. Testing all the functionalities by providing appropriate input to 
verify whether the actual output is matching the expected output or not. It falls within the 
scope of black-box testing and the testers need not concern about the source code of the 
application. 

Non-functional testing: In simple words, how well the system performs is non-
functionality testing. Non-functional testing refers to various aspects of the software such as 
performance, load, stress, scalability, security, compatibility, etc., The Main focus is to 
improve the user experience on how fast the system responds to a request. 

 

TESTING ARTIFACTS:  

Test Artifacts are the deliverables that are given to the stakeholders of a software project. A 
software project which follows SDLC (Software development life cycle) undergoes the 
different phases before delivering to the customer. In this process, there will be some 
deliverables in every phase. Some of the deliverables are provided before the testing phase 
commences and some are provided during the testing phase and rest after the testing phase 
is completed. 

 

 

Some of the test deliverables are as follows: 

Test plan 

Traceability matrix 

Test case 

 

Test script 

Test suite 

Test data or Test Fixture 

Test harness 

 

Why do we need Software Testing? Why is testing required?  What if there is no Software 
Testing in the Software Development process? 

As per the current trend, due to constant change and development in digitization, our lives 
are improving in all areas. The way we work is also changed. We access our bank online, we 



9 

 

do shopping online, we order food online, and many more. We rely on software and 
systems. What if these systems turn out to be defective? We all know that one small bug 
shows a huge impact on business in terms of financial loss and goodwill. To deliver a quality 
product, we need to have Software Testing in the Software Development Process. 

Some of the reasons why software testing becomes a very significant and integral part in the 
field of information technology are as follows. 

1. Cost-effectiveness 

2. Customer Satisfaction 

3. Security 

4. Product Quality 

 

1. Cost-effectiveness: As a matter of fact, design defects can never be completely 
ruled out for any complex system. It is not because developers are careless but because the 
complexity of a system is intractable. If the design issues go undetected, then it will become 
more difficult to trace back defects and rectify it. It will become more expensive to fix it. 
Sometimes, while fixing one bug we may introduce another one in some other module 
unknowingly. If the bugs can be identified in the early stages of development then it costs 
much less to fix them. That is why it is important to find defects in the early stages of the 
software development life cycle. One of the benefits of testing is cost-effectiveness. 

It is better to start testing earlier and introduce it in every phase of the software 
development life cycle and regular testing is needed to ensure that the application is 
developed as per the requirement. 

2. Customer Satisfaction: In any business, the ultimate goal is to give the best 
customer satisfaction. Yes, customer satisfaction is very important. Software testing 
improves the user experience of an application and gives satisfaction to the customers. 
Happy customers mean more revenue for a business. One of the reasons why software 
testing is necessary is to provide the best user experience. 

3. Security: This is probably the most sensitive and vulnerable part of software 
testing. Testing (penetration testing & security testing) helps in product security. Hackers 
gain unauthorized access to data. These hackers steal user information and use it for their 
benefit. If your product is not secured, users won’t prefer your product. Users always look 
for trusted products. Testing helps in removing vulnerabilities in the product. 

4. Product Quality: Software Testing is an art that helps in strengthening the market 
reputation of a company by delivering the quality product to the client as mentioned in the 
requirement specification documents. 

Due to these reasons, software testing becomes a very significant and integral part of the 
Software Development process or life cycle. 

WHAT IS SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)? 



10 

 

Software Development Life Cycle (SDLC) aims to produce a high-quality system that meets 
or exceeds customer expectations, works effectively and efficiently in the current and 
planned information technology infrastructure, and is inexpensive to maintain and cost-
effective to enhance. 

Detailed Explanation: A process followed in software projects is SDLC. Each phase of SDLC 
produces deliverables required by the next phase in the life cycle. Requirements are 
translated into design. Code is produced according to the design. Testing should be done on 
a developed product based on the requirement. The deployment should be done once the 
testing was completed. It aims to produce a high-quality system that meets or exceeds 
customer expectations, works effectively and efficiently in the current and planned 
information technology infrastructure, and is inexpensive to maintain and cost-effective to 
enhance. 

SDLC Process: SDLC is a process which follows in Software Projects to develop a product in a 
systematic way and to deliver a high-quality product. By following proper SDLC process, 
Software companies can react well to the market pressure and release high-quality 
software. This process involves different stages of SDLC right from the requirement stage to 
deployment and maintenance phase.  

A TYPICAL SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) CONSISTS OF THE 
FOLLOWING PHASES: 

Requirement Phase: 
Requirement gathering and analysis is 
the most important phase in the 
software development lifecycle. 
Business Analyst collects the 
requirement from the 
Customer/Client as per the clients 
business needs and documents the 
requirements in the Business 
Requirement Specification (document 
name varies depends upon the 
Organization. Some examples are 
Customer Requirement Specification 
(CRS), Business Specification (BS), 
etc., and provides the same to 
Development Team. 

Analysis Phase: Once the requirement gathering and analysis is done the next step is 
to define and document the product requirements and get them approved by the customer. 
This is done through the SRS (Software Requirement Specification) document. SRS consists 
of all the product requirements to be designed and developed during the project life cycle. 
Key people involved in this phase are Project Manager, Business Analyst and Senior 



11 

 

members of the Team. The outcome of this phase is the Software Requirement 
Specification. 

Design Phase: It has two steps  

1) HLD – High-Level Design – It gives the architecture of the software product to be 
developed and is done by architects and senior developers 

2) LLD – Low-Level Design – It is done by senior developers. It describes how each 
and every feature in the product should work and how every component should 
work. Here, only the design will be there and not the code 

The outcome from this phase is High-Level Document and Low-Level Document which works 
as an input to the next phase. 

Development Phase: Developers of all levels (seniors, juniors, freshers) involved in 
this phase. This is the phase where we start building the software and start writing the code 
for the product. The outcome from this phase is Source Code Document (SCD) and the 
developed product. 

Testing Phase: When the software is ready, it is sent to the testing department 
where Test team tests it thoroughly for different defects. They either test the software 
manually or using automated testing tools depends on the process defined in STLC 
(Software Testing Life Cycle) and ensure that each and every component of the software 
works fine. Once the QA makes sure that the software is error-free, it goes to the next stage, 
which is Implementation. The outcome of this phase is the Quality Product and the Testing 
Artifacts. 

Deployment & Maintenance Phase: After successful testing, the product is 
delivered/deployed to the customer for their use. Deployment is done by the 
Deployment/Implementation engineers. Once when the customers start using the 
developed system then the actual problems will come up and needs to be solved from time 
to time. Fixing the issues found by the customer comes in the maintenance phase. 100% 
testing is not possible – because, the way testers test the product is different from the way 
customers use the product. Maintenance should be done as per SLA (Service Level 
Agreement) 

 

TYPES OF SOFTWARE DEVELOPMENT LIFE CYCLE MODELS: 

There are various Software Development Life Cycle models in the industry which are 
followed during the software development process. These models are also referred to as 
Software Development Process Models. 

Each SDLC model might have a different approach but the Software Development Phases 
and activities remain the same in all models. 



12 

 

Some of the Software Development Life Cycle Models (SDLC Models) followed in the 
industry are as follows: 

1. Waterfall Model: Waterfall Model is a traditional model. It is aka Sequential 
Design Process, often used in SDLC, in which the progress is seen as flowing downwards like 
a waterfall, through the different phases such as Requirement Gathering, Feasibility 
Study/Analysis, Design, Coding, Testing, Installation, and Maintenance. Every next phase is 
begun only once the goal of the previous phase is completed. This methodology is preferred 
in projects where quality is more important as compared to schedule or cost. This 
methodology is best suitable for short term projects where the requirements will not 
change. (E.g. Calculator, Attendance Management)  

2. Spiral: Spiral model works in an iterative nature. It is a combination of both 
Prototype development process and Linear development process (waterfall model). This 
model place more emphasis on risk analysis. Mostly this model is adopted to the large and 
complicated projects where risk is high. Every Iteration starts with planning and ends with 
the product evaluation by client.  

3. V Model: V-model is also known as Verification and Validation (V&V) model. 
In this, each phase of SDLC must be completed before the next phase starts. It follows a 
sequential design process same like waterfall model.  

4. Prototype: The Prototype Model is one of the mostly used Software 
Development Life Cycle Models (SDLC models). A prototype of the end product is first 
developed prior to the actual product. Usually this SDLC model is used when the customers 
don’t know the project requirements beforehand. By developing the prototype of the end 
product, it gives the customers an opportunity to see the product early in the life cycle. 

It starts by getting the inputs (requirements) from the customers and undergoes developing 
the prototype. By getting the customers feedback, requirements are refined. Actual product 
development starts once the customer approves the prototype. The developed product is 
released for customer’s feedback. Released product is refined as per the customers. This 
process goes on until the model is accepted by the customer. 

5. Agile: Agile Scrum Methodology is one of the popular Agile software 
development methods. There are some other Agile software development methods but the 
popular one which is used widely is Agile Scrum Methodology. The Agile Scrum 
Methodology is a combination of both Incremental and Iterative model for managing 
product development.  

 

OTHER RELATED SOFTWARE DEVELOPMENT LIFECYCLE MODELS ARE: 

 Agile Model, Rapid Application Development, Rational Unified Model, Hybrid Model etc. 

 



13 

 

 

3. SOFTWARE TESTING AS A CAREER PATH (SKILLS, SALARY, GROWTH) 

Skills required to become a Software Tester 

 

 

 

 

 

 

 

 

 

 

Non-Technical Skills 

Following skills are essential to becoming a good software tester. Compare your skill set 
against the following checklist to determine whether Software Testing is a reality for you- 

Analytical skills: A good software tester should have sharp analytical skills. Analytical 
skills will help break up a complex software system into smaller units to gain a better 
understanding and create test cases. Not sure that you have good analytical skills - Refer 
this link - if, if you can solve at least ONE problem you have excellent analytical skills. 

Communication skill: A good software tester must have good verbal and written 
communication skill. Testing artifacts (like test cases/plans, test strategies, bug reports, etc.) 
created by the software tester should be easy to read and comprehend. Dealing with 
developers (in the event of bugs or any other issue) will require a shade of discreetness and 
diplomacy. 

Time Management & Organization Skills: Testing at times could be a demanding job 
especially during the release of code. A software tester must efficiently manage workload, 
have high productivity, exhibit optimal time management, and organization skills 

GREAT Attitude: To be a good software tester you must have a GREAT attitude. An 
attitude to 'test to break', detail orientation, willingness to learn and suggest process 
improvements. In the software industry, technologies evolve with an overwhelming speed, 
and a good software tester should upgrade his/her technical skills with the changing 



14 

 

technologies. Your attitude must reflect a certain degree of independence where you take 
ownership of the task allocated and complete it without much direct supervision. 

Passion: To Excel in any profession or job, one must have a significant degree of the 
passion for it. A software tester must have a passion for his / her field. BUT how do you 
determine whether you have a passion for software testing if you have never tested before? 
Simple TRY it out and if software testing does not excite you switch to something else that 
holds your interest 

Technical Skills 

Basic knowledge of Database/ SQL: Software Systems have a large amount of data in 
the background. This data is stored in different types of databases like Oracle, MySQL, etc. 
in the backend. So, there will be situations when this data needs to be validated. In that 
case, simple/complex SQL queries can be used to check whether proper data is stored in the 
backend databases. 

Basic knowledge of Linux commands: Most of the software applications like Web-
Services, Databases, Application Servers are deployed on Linux machines.So it is crucial for 
testers to have knowledge about Linux commands. 

Knowledge and hands-on experience of a Test Management Tool:Test Management 
is an important aspect of Software testing. Without proper test management techniques, 
software testing process will fail. Test management is nothing but managing your testing 
related artifacts. 

FOR EXAMPLE - A tool like Testlink can be used for tracking all the test cases written by 
your team. 

There are other tools available that can be utilized for Test Management. So, it is important 
to have knowledge and working experience of such tools because they are used in most of 
the companies. 

Knowledge and hands-on experience of any Defect Tracking tool- Defect Tracking 
and Defect life cycle are key aspects of software testing. It is extremely critical to managing 
defects properly and track them in a systematic manner. Defect tracking becomes necessary 
because the entire team should know about the defect including managers, developers, and 
testers. Several tools are used to lock defects including QC, Bugzilla, Jira, etc. 

Knowledge and hands-on experience of Automation tool: If you see yourself as an 
"Automation tester" after a couple of years working on manual testing, then you must 
master a tool and get in-depth, hands-on knowledge of automation tools. 

Note!  Only knowledge of any Automation tool is not sufficient to crack the interview, you 
must have good hands-on experience, so practice the tool of your choice to achieve mastery.  

Knowledge of any scripting language like VBScript, JavaScript, C# is always helpful as 
a tester if you are looking for a job into automation. Few companies also use Shell/Perl 



15 

 

scripting, and there is a lot of demand for testers having knowledge of the same. Again, it 
will depend on the company and which tools are used by that company. 

Please note you do not need ALL the technical skills listed above. The technical skill sets 
required vary with the Job Role and company processes. 

 

Academic Background 

Academic background of a software tester should be in Computer Science. A BTech/ B.E., 
MCA, BCA, BSc- Computers, will land you a job quickly. 

If you do not hold any of these degrees, then you must complete a software testing 
certification like ISTQB and CSTE which help you learn Software Development/ Test Life 
Cycle and other testing methodologies. 

Remuneration 

Compensation of a software tester varies from company to company. Average salary range 
of a software tester in the US is $45,993 - $74,935. Average salary range of a software tester 
in India is Rs 247,315 - Rs 449,111. 

What Does a Software Tester do? 

On any typical work day, you will be busy understanding requirement documents, creating 
test cases, executing test cases, reporting and re-testing bugs, attending review meetings 
and other team building activities. 

 

Software Tester Career Path 

Your career progression as a software tester (QA Analyst) in typical CMMI level 5 company 
will look like following but will vary from company to company: 

1. QA Analyst (Fresher) 
2. Sr. QA Analyst (2-3 years' experience) 
3. QA Team Coordinator (5-6 years' experience) 
4. Test Manager (8-11 years' experience) 
5. Senior Test Manager (14+ experience) 
6. Alternate Career Tracks as a Software Tester 

Once you have got your hands dirty in manual testing, you can pursue following 
specializations: 

Automation Testing: As an Automation Test Engineer, you will be responsible for 
automating manual test case execution which otherwise could be time-consuming. Tools 
used IBM Rational Robot, Silk performer, and QTP 



16 

 

Performance Testing: As a performance test engineer, you will be responsible for 
checking application responsiveness (time is taken to load, maximum load application can 
handle), etc. Tools used WEBLoad, Loadrunner. 

Business Analyst: A major advantages Testers have over Developers is that they have 
an end to end business knowledge. An obvious career progression for testers is to become a 
Business Analyst. As a Business Analyst, you will be responsible for analyzing and assessing 
your company's business model and workflows. As a BA, you will intergrate these models 
and workflows with technology. 

How to Become Software Tester 

You start with learning Basic principles of Software Testing. Once done you apply for 
freelancing jobs. This will help you gain practical knowledge and will fortify the testing 
concepts you have learned. 

Next, you proceed to Selenium - Automation tool, then JMeter - Performance Testing tool 
and finally TestLink - Test Management Tool. All the while you are learning, we suggest you 
apply for freelancing jobs (apart from other benefits you will make some money too!). 

Once you are through with all the tools, you may consider taking a certification.(ISTQB) 
However, this is optional. 

 

4. SOFTWARE TESTING PRINCIPLES: LEARN WITH EXAMPLES 

It is important that you achieve optimum test results while conducting software testing 
without deviating from the goal. But how you determine that you are following the right 
strategy for testing? For that, you need to stick to some basic testing principles. Here are the 
common seven testing principles that are widely practiced in the software industry. 

To understand this, consider a scenario where you are moving a file from folder A to Folder 
B. 

Think of all the possible ways you can test this. Apart from the usual scenarios, you can also 
test the following conditions: Trying to move the file when it is Open; You do not have the 
security rights to paste the file in Folder B; Folder B is on a shared drive and storage capacity 
is full; Folder B already has a file with the same name, in fact, the list is endless 

Or suppose you have 15 input fields to test, each having 5 possible values, the number of 
combinations to be tested would be 5^15 

If you were to test the entire possible combinations project EXECUTION TIME & COSTS 
would rise exponentially. We need certain principles and strategies to optimize the testing 
effort. 

 



17 

 

THE 7 BASIC PRINCIPLES OF SOFTWARE TESTING: 

1) EXHAUSTIVE TESTING IS NOT POSSIBLE: Yes! Exhaustive testing is not possible. 
Instead, we need the optimal amount of testing based on the risk assessment of the 
application. 

For Example: If suppose we have an input field which accepts alphabets, special characters, 
and numbers from 0 to 1000 only. Imagine how many combinations would appear for 
testing, it is not possible to test all combinations for each input type. 

The testing efforts required to test will be huge and it will also impact the project timeline 
and cost. Hence it is always said that exhaustive testing is practically not possible. 

And how do you determine this risk? To answer this let's do an exercise: 

In your opinion: Which operation is most likely to cause your Operating system to fail? 

I am sure most of you would have guessed, Opening 10 different application all at the same 
time. 

So, if you were testing this Operating system, you would realize that defects are likely to be 
found in multi-tasking activity and need to be tested thoroughly which brings us to our next 
principle: 

 2) DEFECT CLUSTERING: Defect Clustering which states that a small number of 
modules contain most of the defects detected. This is the application of the Pareto Principle 
to software testing: approximately 80% of the problems are found in 20% of the modules. 

By experience, you can identify such risky modules. But this approach has its own problems. 
If the same tests are repeated over and over again, eventually the same test cases will no 
longer find new bugs. 

3) PESTICIDE PARADOX: Repetitive use of the same pesticide mix to eradicate 
insects during farming will over time lead to the insects developing resistance to the 
pesticide Thereby ineffective of pesticides on insects. The same applies to software testing. 
If the same set of repetitive tests are conducted, the method will be useless for discovering 
new defects. 

To overcome this, the test cases need to be regularly reviewed & revised, adding new & 
different test cases to help find more defects. 

Testers cannot simply depend on existing test techniques. He must look out continually to 
improve the existing methods to make testing more effective. But even after all this sweat & 
hard work in testing, you can never claim your product is bug-free. 

For example: Near its completion, Windows 98 was released as Windows 98 Release 
Candidate on April 3, 1998,[10] which expired on December 31. This coincided with a notable 
press demonstration at COMDEX that month. Microsoft CEO Bill Gates was highlighting the 
operating system's ease of use and enhanced support for Plug and Play (PnP). However, 

https://en.wikipedia.org/wiki/Windows_98#cite_note-winsuper-10
https://en.wikipedia.org/wiki/COMDEX
https://en.wikipedia.org/wiki/Bill_Gates
https://en.wikipedia.org/wiki/Legacy_Plug_and_Play


18 

 

when presentation assistant Chris Capossela plugged a USB scanner in, the operating system 
crashed, displaying a Blue Screen of Death. Bill Gates remarked after derisive applause and 
cheering from the audience, "That must be why we're not shipping Windows 98 yet." 

You think a company like MICROSOFT would not have tested their OS thoroughly & would 
risk their reputation just to see their OS crashing during its public launch! 

4) TESTING SHOWS A PRESENCE OF DEFECTS: Hence, testing principle states that 
- Testing talks about the presence of defects and don’t talk about the absence of defects. i.e. 
Software Testing reduces the probability of undiscovered defects remaining in the software 
but even if no defects are found, it is not a proof of correctness. 

But what if, you work extra hard, taking all precautions & make your software product 99% 
bug-free. And the software does not meet the needs & requirements of the clients. 

This leads us to our next principle, which states that- Absence of Error 

 

Example 1: 

Consider a banking application, this application is thoroughly tested and undergoes different 
phases of testing like sit, uat etc. And currently no defects are identified in the system. 

However, there might be a possibility that in the production environment, the actual 
customer tries a functionality which is rarely used in the banking system and the testers 
overlooked that functionality, hence no defect was found till date or the code has never been 
touched by developers. 

 

Example 2: 

We have seen several advertisements for soaps, toothpaste, handwash or disinfectant 
sprays etc on television. 

Consider a handwash advertisement which says on the television that 99% germs can be 
removed if that specific handwash is used. This clearly proves that the product is not 100% 
germ-free. Thus in our testing concept, we can say that no software is defect free. 

 

5) ABSENCE OF ERROR – FALLACY: It is possible that software which is 99% bug-
free is still unusable. This can be the case if the system is tested thoroughly for the wrong 
requirement. Software testing is not mere finding defects, but also to check that software 
addresses the business needs. The absence of Error is a Fallacy i.e. Finding and fixing defects 
does not help if the system build is unusable and does not fulfill the user's needs & 
requirements. 

https://en.wikipedia.org/wiki/Chris_Capossela
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Blue_Screen_of_Death


19 

 

For Example: suppose the application is related to an e-commerce site and the 
requirements against “Shopping Cart or Shopping Basket” functionality which is 
wrongly interpreted and tested. Here, even finding more defects does not help to 
move the application into the next phase or in the production environment. 

To solve this problem, the next principle of testing states that. 

6) EARLY TESTING: Early Testing - Testing should start as early as possible in the 
Software Development Life Cycle. So that any defects in the requirements or design phase 
are captured in early stages. It is much cheaper to fix a Defect in the early stages of testing. 
But how early one should start testing? It is recommended that you start finding the bug the 
moment the requirements are defined.  

Consider the below image which shows how the cost of defect fixing gets increased as 
testing move towards the live production. 

 

 

7) TESTING IS CONTEXT DEPENDENT: Testing is context dependent which basically 
means that the way you test an e-commerce site will be different from the way you test a 
commercial off the shelf application. All the developed software’s are not identical. You 
might use a different approach, methodologies, techniques, and types of testing depending 
upon the application type. For instance, testing any POS system at a retail store will be 
different than testing an ATM machine. 

There are several domains available in the market like Banking, Insurance, Medical, Travel, 
Advertisement etc and each domain has a number of applications. Also for each domain, 
their applications have different requirements, functions, different testing purpose, risk, 
techniques etc. 

Different domains are tested differently, thus testing is purely based on the context of the 
domain or application. 

 



20 

 

For Example: testing a banking application is different than testing any e-commerce or 
advertising application. The risk associated with each type of application is different, thus it 
is not effective to use the same method, technique, and testing type to test all types of 
application. 

 

 

5. MANUAL TESTING TUTORIAL FOR BEGINNERS: CONCEPTS, TYPES, TOOL 

 

Manual Testing Definition: Manual testing a type of testing that involves validation of the 
requirements of the application by executing a predefined set of test cases manually 
without the use of any automation tool. 

MANUAL TESTING PROCESS: 

Requirement Understanding – In 
this phase, all the requirements 
are gathered and analyzed. This is 
the most important phase of 
testing as the requirements are 
the very basis of the test cases 
and the overall testing of the 
application. 

Test plan and test strategy 
– In this phase, a document 
containing the scope and 
objective of testing is defined 
(Test Plan) along with deciding 
some principles that will define 
how testing will be carried out 
(Test Strategy). 

Test case creation – After 
test planning and test strategy, we 
prepare test cases based on the 
functional and non-functional 
requirements of the application. 

Test case execution and defect logging – Once test cases are ready and application is 
available for testing, we begin with test case execution, marking each test case as pass-fail 
and raising defects for each failure. 



21 

 

Retesting and regression – After the bug fixing by developers, we retest the bug fixes 
and also do regression testing, to ensure that the fixes don’t adversely affect other 
functionalities. 

Test report sharing – Once the whole test execution cycle gets completed, the test 
results are shared with the relevant stakeholders along with a set of known issues, if any. 

ADVANTAGES OF MANUAL TESTING: 

Manual testing helps in finding the defects before delivering to the customer, thus 
maintaining the application quality. It helps in the early identification of the bugs. Bugs 
found by the customer or even in the later stage of the project are difficult to fix and 
increase the cost of the project. Hence, efficiently carried out manual testing helps in 
avoiding such situations by early detection of issues. It helps in ensuring the conformance to 
not only the functional requirements but non-functional requirements as well as – 
performance, usability, and user-friendliness. 

DISADVANTAGES OF MANUAL TESTING 

Time-consuming – It is a very time-consuming process as testers have to create exhaustive 
test cases and then execute each and every step of the test cases. Also, the documentation 
of the test results with actual results takes time. Requires more resources – As compared to 
automation testing, in case of manual testing more resources are required to create and 
execute the test cases. Prone to human errors – The manual testing relies heavily on the 
ability or skills of the person creating and executing the test cases. Even with the predefined 
requirements and test steps, two testers can come up with different test results based on 
their understanding. 

 

Not all testing can be done manually – Some of the testing like – Performance testing, 
security testing, or testing of scenarios like distributed testing, multi-threaded operation 
testing cannot be done effectively without any automation, performance or security tool. 

 

TIPS FOR BETTER MANUAL TESTING 

Get a thorough understanding of the requirements - For better manual testing, the right and 
complete understanding of the requirements is very vital. It helps in improving the test 
coverage thereby improving the overall testing. 

Good Domain knowledge - Good understanding of the domain is also very important 
as it helps in taking care of unspecified requirements or the non-functional requirements e.g 
a person having knowledge of the e-commerce domain can effectively test any e-commerce 
application even with a limited set of requirements. 

Technical skills – Having technical skills like the ability to query the database, 
understanding of table structure, knowledge of client-server architecture, etc helps in the 



22 

 

understanding of the internal working of the application and data flow. This, in turn, helps in 
creating better test cases. 

Attention to detail – While testing, attention to detail helps in meticulously testing 
each and every feature of the application. 

Do not assume – As testers grow in experience, at times they tend to take certain 
things for granted but no matter how simple or trivial the functionality to be tested is, the 
tester should not assume that it will work without validating the same. 

Good communication skills – As a tester, one has to deal with different stakeholders, 
fellow developers, managers, and sometimes with the client representatives also. Good 
communication and interpersonal skills help testers inefficient gathering of requirements as 
clearly articulated queries help in avoiding any requirement gaps. 

 

WHAT IS SOFTWARE TESTING LIFE CYCLE (STLC) 

Software Testing Life Cycle (STLC) identifies what test activities to carry out and when to 
accomplish those test activities. Even though testing differs between Organizations, there is 
a testing life cycle. 

The different phases of Software Testing Life Cycle are: 

1. Requirement Analysis 

2. Test Planning 

3. Test Design 

4. Test Environment Setup 

5. Test Execution 

6. Test Closure 

 

Every phase of STLC (Software Testing Life Cycle) has a definite Entry and Exit Criteria. 

Requirement Analysis: Entry criteria for this phase is BRS (Business Requirement 
Specification) document. During this phase, test team studies and analyzes the 
requirements from a testing perspective. This phase helps to identify whether the 
requirements are testable or not. If any requirement is not testable, test team can 
communicate with various stakeholders (Client, Business Analyst, Technical Leads, System 
Architects etc) during this phase so that the mitigation strategy can be planned. 

Entry Criteria: BRS (Business Requirement Specification) 
Deliverables: List of all testable requirements, Automation feasibility report (if applicable) 

Test Planning: Test planning is the first step of the testing process. In this phase 
typically Test Manager/Test Lead involves determining the effort and cost estimates for 
the entire project. Preparation of Test Plan will be done based on the requirement analysis. 
Activities like resource planning, determining roles and responsibilities, tool selection (if 



23 

 

automation), training requirement etc., carried out in this phase. The deliverables of this 
phase are Test Plan & Effort estimation documents. 

Entry Criteria: Requirements Documents 
Deliverables: Test Strategy, Test Plan, and Test Effort estimation document. 

Test Design: Test team starts with test cases development activity here in this phase. 
Test team prepares test cases, test scripts (if automation) and test data. Once the test cases 
are ready then these test cases are reviewed by peer members or team lead. Also, test team 
prepares the Requirement Traceability Matrix (RTM). RTM traces the requirements to the 
test cases that are needed to verify whether the requirements are fulfilled. The deliverables 
of this phase are Test Cases, Test Scripts, Test Data, Requirements Traceability Matrix 

Entry Criteria: Requirements Documents (Updated version of unclear or missing 
requirement) 
Deliverables: Test cases, Test Scripts (if automation), Test data. 

Test Environment Setup: This phase can be started in parallel with Test design 
phase. Test environment setup is done based on the hardware and software requirement 
list. Some cases test team may not be involved in this phase. Development team or 
customer provides the test environment. Meanwhile, test team should prepare the smoke 
test cases to check the readiness of the given test environment. 

Entry Criteria: Test Plan, Smoke Test cases, Test Data 
Deliverables: Test Environment. Smoke Test Results. 

Test Execution: Test team starts executing the test cases based on the planned test 
cases. If a test case result is Pass/Fail then the same should be updated in the test cases. 
Defect report should be prepared for failed test cases and should be reported to the 
Development Team through bug tracking tool (eg., Quality Center) for fixing the defects. 
Retesting will be performed once the defect was fixed.  

Entry Criteria: Test Plan document, Test cases, Test data, Test Environment. 
Deliverables: Test case execution report, Defect report, RTM 

Test Closure: The final stage where we prepare Test Closure Report, Test Metrics. 
Testing team will be called out for a meeting to evaluate cycle completion criteria based on 
Test coverage, Quality, Time, Cost, Software, Business objectives. Test team analyses 
the test artifacts (such as Test cases, Defect reports etc.,) to identify strategies that have to 
be implemented in future, which will help to remove process bottlenecks in the upcoming 
projects. Test metrics and Test closure report will be prepared based on the above criteria. 

Entry Criteria: Test Case Execution report (make sure there are no high severity defects 
opened), Defect report 
Deliverables: Test Closure report, Test metrics 

 



24 

 

 

  

WHAT IS THE DIFFERENCE BETWEEN SDLC & STLC (SDLC VS STLC)? >>> 

Criterion SDLC STLC 

Origin Development Life Cycle Testing Life Cycle 

Definition Software Development Life Cycle 
(SDLC) aims to produce a high-quality 
system that meets or exceeds 
customer expectations, works 
effectively and efficiently in the 
current and planned information 
technology infrastructure, and is 
inexpensive to maintain and cost-
effective to enhance. 

Software Testing Life Cycle (STLC) 
identifies what test activities to 
carry out and when to accomplish 
those test activities. Even though 
testing differs between 
Organizations, there is a testing life 
cycle. 

Relationship It is taken as the predecessor It is taken as the successor 

Phases Requirement Gathering, Analysis, 
Design, Coding, Testing, Deployment 
& maintenance 

Requirement Analysis, Test 
Planning, Test Design, Environment 
Setup, Test Execution, Test Closure 

Requirement 
Gathering 
Phase 

Business analyst gathers the 
requirements and create 
Development Plan 

QA team analyses requirement 
documents and create System Test 
Plan 

Design Phase The development team develops the 
high and low-level design of the 
software based on the requirements 

Test Architect or a Test Lead usually 
plan the test strategy 

Coding 
Phase 

The actual code is developed as per 
the designed document 

The QA team prepares the test 
environment 

Testing Actual testing is done in this phase. It 
includes Unit, Integration, System, 

Actual testing is done in this phase. 
Defect reporting & retesting is done 



25 

 

Criterion SDLC STLC 

Phase Retesting & Regression testing etc., 
Also the development team involves 
in fixing the bugs reported 

here 

Deployment 
or 
Maintenance 
Phase 

The development team involves in 
support and release updates 

The QA team executes regression 
suites to check maintenance code 
deployed 

 

WHAT IS BUG LIFE CYCLE OR DEFECT LIFE CYCLE IN SOFTWARE TESTING 

Bug life cycle is also known as Defect life cycle. In Software Development process, the bug 
has a life cycle. The bug should go through the life cycle to be closed. Bug life cycle varies 
depends upon the tools (QC, JIRA etc.,) used and the process followed in the organization. 

What is a Software Bug? 

Software bug can be defined as the abnormal behavior of the software. Bug starts when 
the defect is found and ends when a defect is closed, after ensuring it is not reproduced. 

The different states of a bug in the bug life cycle are as follows: 

New: When a tester finds a new defect. He should provide a proper Defect 
document to the Development team to reproduce and fix the defect. In this state, the status 
of the defect posted by tester is “New” 

Assigned: Defects which are in the status of New will be approved (if valid) and 
assigned to the development team by Test Lead/Project Lead/Project Manager. Once the 
defect is assigned then the status of the bug changes to “Assigned” 

Open: The development team starts analyzing and works on the defect fix 

Fixed: When a developer makes the necessary code change and verifies the change, 
then the status of the bug will be changed as “Fixed” and the bug is passed to the testing 
team. 

Test: If the status is “Test”, it means the defect is fixed and ready to do test whether 
it is fixed or not. 

Verified: The tester re-tests the bug after it got fixed by the developer. If there is no 
bug detected in the software, then the bug is fixed and the status assigned is “verified.” 



26 

 

Closed: After verified the fix, if the bug is no longer exits then the status of bug will 
be assigned as “Closed.” 

Reopen: If the defect remains same after the retest, then the tester posts the defect 
using defect retesting document and changes the status to “Reopen”. Again the bug goes 
through the life cycle to be fixed. 

Duplicate: If the defect is repeated twice or the defect corresponds the same 
concept of the bug, the status is changed to “duplicate” by the development team. 

Deferred: In some cases, Project Manager/Lead may set the bug status as deferred. 
If the bug found during end of release and the bug is minor or not important to fix 
immediately 
If the bug is not related to current build 
If it is expected to get fixed in the next release 
Customer is thinking to change the requirement 
In such cases the status will be changed as “deferred” and it will be fixed in the next release. 

Rejected: If the system is working according to specifications and bug is just due to 
some misinterpretation (such as referring to old requirements or extra features) then Team 
lead or developers can mark such bugs as “Rejected” 

Some other statuses are: 

Cannot be fixed: Technology not supporting, Root of the product issue, Cost of fixing 
bug is more 

Not Reproducible: Platform mismatch, improper defect document, data mismatch, 
build mismatch, inconsistent defects 

Need more information: If a developer is unable to reproduce the bug as per the 
steps provided by a tester then the developer can change the status as “Need more 
information’. In this case, the tester needs to add detailed reproducing steps and assign bug 
back to the development team for a fix. This won’t happen if the tester writes a good defect 
document. 

 

Bug Report Template – Detailed Explanation 

Defect report template or Bug report template is one of the test artifacts. It comes into 
picture when the test execution phase is started. 

The purpose of using Defect report template or Bug report template is to convey the 
detailed information (like environment details, steps to reproduce etc.,) about the bug to 
the developers. It allows developers to replicate the bug easily. 

Components of Bug Report Template: 



27 

 

1) Defect ID: Add a Defect ID using a naming convention followed by your team. The 
Defect ID will be generated automatically in case of defect management tool. 

2) Title/Summary: Title should be short and simple. It should contain specific terms 
related to the actual issue. Be specific while writing the title. 

Example: Assume, you have found a bug in the registration page while uploading a profile 
picture that too a particular file format (i.e., JPEG file). System is crashing while uploading a 
JPEG file. 

Good: “Uploading a JPEG file (Profile Picture) in the Registration Page crashes the system” 

Bad: “System crashes”. 

 

3) Reporter Name: Name of the one who found the defect (Usually tester’s name 
but sometimes it might be Developer, Business Analyst, Subject Matter Expert 
(SME), Customer) 

4) Defect Reported Date: Mention the date on which you have found the bug. 
5) Who Detected: Specify the designation of the one who found the defect. E.g. QA, 

Developer, Business Analyst, SME, Customer 
6) How Detected: In this field, you must specify on how you have detected such as 

while doing Testing or while doing Review or while giving Walkthrough etc., 
7) Project Name: Sometimes, we may work on multiple projects simultaneously. So, 

choose the project name correctly. Specify the name of the project (If it’s a 
product, specify the product name) 

8) Release/Build Version: On which release this issue occurs. Mention the build 
version details clearly. 

9) Defect/Enhancement: If the system is not behaving as intended then you need to 
specify it as a Defect. If its just a request for a new feature then you must specify 
it as Enhancement. 

10) Environment: You must mention the details of Operation Systems, Browser 
Details and any other related to the test environment in which you have 
encountered the bug. (Example: Windows 8/Chrome 48.0.2564.103) 

11) Priority: Priority defines how soon the bug should be fixed. Usually, the priority of 
the bug is set by the Managers. Based on the priority, developers could 
understand how soon it must be fixed and set the order in which a bug should be 
resolved. 

a) Categories of Priority: 

High     Medium    Low 

12) Severity: Severity talks about the impact of the bug on the customer’s business. 
Usually, the severity of the bug is set by the Managers. Sometimes, testers 
choose the severity of the bug but in most cases, it will be selected by 
Managers/Leads. 



28 

 

a) Categories of Severity: 

Blocker    Critical   Major   Minor   Trivial 

13) Status: Specify the status of the bug. If you just found a bug and about to post it 
then the status will be “New”. In the course of bug fixing, the status of the bug will change. 

(E.g. New/ Assigned/ Open/ Fixed/ Test/ Verified/ Closed/ Reopen/ Duplicate/ Deferred/ 
Rejected/ cannot be fixed/ Not Reproducible/ Need more information) 

14) Description: In the description section, you must briefly explain what you have 
done before facing the bug. 

15) Steps to reproduce: In this section, you should describe how to reproduce the 
bug in step by step manner. Easy to follow steps give room to the developers to fix the issue 
without any chaos. These steps should describe the bug well enough and allows developers 
to understand and act on the bug without discussing to the one who wrote the bug report. 
Start with “opening the application”, include “prerequisites” if any and write till the step 
which “causes the bug”. 

Example:  

Good: 

i. Open URL “Your URL” 
ii. Click on “Registration Page” 
iii. Upload “JPEG” file in the profile photo field 

Bad: 

Upload a file in the registration page. 

16) URL: Mention the URL of the application (If available) 

17) Expected Result: What is the expected output from the application when you 
make an action which causes failure. 

Example:  

Good: A message should display “Profile picture uploaded successfully” 

Bad: System should accept the profile picture. 

 

18) Actual Result: What is the expected output from the application when you make 
an action which causes failure. 

Example:  

Good: “Uploading a JPEG file (Profile Picture) in the Registration Page crashes the system”. 



29 

 

Bad: System is not accepting profile picture. 

19) Attachments: Attach the screenshots which you had captured when you faced 
the bug. It helps the developers to see the bug which you have faced. 

20) Defect Close Date: The ‘Defect Close Date’ is the date which needs to be updated 
once you ensure that the defect is not reproducible. 

 

DIFFERENCE BETWEEN DEFECT, BUG, ERROR AND FAILURE 

Let’s see the difference between defect, bug, error and failure. In general, we use these 
terms whenever the system/application acts abnormally. Sometimes we call it’s an error 
and sometimes bug and so on. Many of the newbies in Software Testing industry have 
confusion in using this. 

Generally, there is a contradiction in the usage of these terminologies. Usually in Software 
Development Life Cycle we use these terms based on the phase. 

Note: Both Defect and Bug are the issues in an application but in which phase of SDLC it was 
found makes the overall difference. 

What is a defect? 

The variation between the actual results and expected results is known as defect. If a 
developer finds an issue and corrects it by himself in the development phase then it’s called 
a defect. 

What is a bug? 

If testers find any mismatch in the application/system in testing phase then they call it as 
Bug. As mentioned earlier, there is a contradiction in the usage of Bug and Defect. People 
widely say the bug is an informal name for the defect. 

What is an error? 

We can’t compile or run a program due to coding mistake in a program. If a developer 
unable to successfully compile or run a program then they call it as an error. 

What is a failure? 

Once the product is deployed and customers find any issues then they call the product as a 
failure product. After release, if an end user finds an issue then that particular issue is called 
as failure 

Points to know: If a Quality Analyst (QA) finds a bug, he has to reproduce and record it using 
the bug report template. 

 



30 

 

COMMON TYPES OF SOFTWARE TESTING: 
 

Unit Testing 

Integration Testing 

System Testing 

Sanity Testing 

Smoke Testing 

Interface Testing 

Regression Testing 

 

 

Beta/Acceptance Testing 

Non-functional Testing 
types include:  

Performance Testing 

Load Testing 

Stress Testing 

Volume Testing 

 

 

Security Testing 

Compatibility Testing 

Install Testing 

Recovery Testing 

Reliability Testing 

Usability Testing 

Compliance Testing 

Localization Testing 

Let's see more details about these Testing types.  

#1) Alpha Testing: It is the most common type of testing used in the Software 
industry. The objective of this testing is to identify all possible issues or defects before 
releasing it into the market or to the user. 

Alpha Testing is carried out at the end of the software development phase but before the 
Beta Testing. Still, minor design changes may be made as a result of such testing. 

Alpha Testing is conducted at the developer’s site. In-house virtual user environment can be 
created for this type of testing. 

#2) Acceptance Testing: An Acceptance Test is performed by the client and verifies 
whether the end to end the flow of the system is as per the business requirements or not 
and if it is as per the needs of the end-user. Client accepts the software only when all the 
features and functionalities work as expected. 

It is the last phase of the testing, after which the software goes into production. This is also 
called User Acceptance Testing (UAT). 

#3) Ad-hoc Testing: The name itself suggests that this testing is performed on an Ad-
hoc basis i.e. with no reference to the test case and also without any plan or documentation 
in place for such type of testing. 

The objective of this testing is to find the defects and break the application by executing any 
flow of the application or any random functionality. 

Ad-hoc Testing is an informal way of finding defects and can be performed by anyone in the 
project. It is difficult to identify defects without a test case but sometimes it is possible that 
defects found during ad-hoc testing might not have been identified using existing test cases. 



31 

 

#4) Accessibility Testing: The aim of Accessibility Testing is to determine whether the 
software or application is accessible for disabled people or not. 

Here, disability means deaf, color blind, mentally disabled, blind, old age and other disabled 
groups. Various checks are performed such as font size for visually disabled, color and 
contrast for color blindness, etc. 

#5) Beta Testing: Beta Testing is a formal type of Software Testing which is carried 
out by the customer. It is performed in the Real Environment before releasing the product 
to the market for the actual end-users. 

Beta Testing is carried out to ensure that there are no major failures in the software or 
product and it satisfies the business requirements from an end-user perspective. Beta 
Testing is successful when the customer accepts the software. Usually, this testing is 
typically done by end-users or others. It is the final testing done before releasing an 
application for commercial purpose. Usually, the Beta version of the software or product 
released is limited to a certain number of users in a specific area. 

So end-user actually uses the software and shares the feedback to the company. Company 
then takes necessary action before releasing the software to the worldwide. 

#6) Back-end Testing: Whenever an input or data is entered on front-end application, 
it stores in the database and the testing of such database is known as Database Testing or 
Backend Testing. 

There are different databases like SQL Server, MySQL, and Oracle, etc. Database Testing 
involves testing of table structure, schema, stored procedure, data structure and so on. 

In Back-end Testing GUI is not involved, testers are directly connected to the database with 
proper access and testers can easily verify data by running a few queries on the database. 

There can be issues identified like data loss, deadlock, data corruption etc during this back-
end testing and these issues are critical to fixing before the system goes live into the 
production environment 

#7) Browser Compatibility Testing: It is a subtype of Compatibility Testing (which is 
explained below) and is performed by the testing team. Browser Compatibility Testing is 
performed for web applications and it ensures that the software can run with the 
combination of different browser and operating system. This type of testing also validates 
whether web application runs on all versions of all browsers or not. 

#8) Backward Compatibility Testing: It is a type of testing which validates whether 
the newly developed software or updated software works well with the older version of the 
environment or not. Backward Compatibility Testing checks whether the new version of the 
software works properly with file format created by an older version of the software; it also 
works well with data tables, data files, data structure created by the older version of that 
software. 



32 

 

If any of the software is updated then it should work well on top of the previous version of 
that software. 

#9) Black Box Testing: Internal system design is not considered in this type of testing. 
Tests are based on the requirements and functionality.  

#10) Boundary Value Testing: This type of testing checks the behavior of the 
application at the boundary level. Boundary Value Testing is performed for checking if 
defects exist at boundary values. Boundary Value Testing is used for testing a different 
range of numbers. There is an upper and lower boundary for each range and testing is 
performed on these boundary values. 

If testing requires a test range of numbers from 1 to 500 then Boundary Value Testing is 
performed on values at 0, 1, 2, 499, 500 and 501. 

#11) Branch Testing: It is a type of White box Testing and is carried out during Unit 
Testing. Branch Testing, the name itself suggests that the code is tested thoroughly by 
traversing at every branch. 

#12) Comparison Testing: Comparison of a product's strength and weaknesses with 
its previous versions or other similar products is termed as Comparison Testing. 

#13) Compatibility Testing: It is a testing type in which it validates how software 
behaves and runs in a different environment, web servers, hardware, and network 
environment. Compatibility testing ensures that software can run on a different 
configuration, different database, different browsers, and their versions. Compatibility 
testing is performed by the testing team. 

#14) Component Testing: It is mostly performed by developers after the completion 
of unit testing. Component Testing involves testing of multiple functionalities as a single 
code and its objective is to identify if any defect exists after connecting those multiple 
functionalities with each other. 

#15) End-to-End Testing: Similar to system testing, End-to-End Testing involves 
testing of a complete application environment in a situation that mimics real-world use, 
such as interacting with a database, using network communications, or interacting with 
other hardware, applications, or systems if appropriate. 

#16) Equivalence Partitioning: It is a testing technique and a type of Black Box 
Testing. During this Equivalence Partitioning, a set of the group is selected and a few values 
or numbers are picked up for testing. It is understood that all values from that group 
generate the same output. 

The aim of this testing is to remove redundant test cases within a specific group which 
generates the same output but not any defect. 



33 

 

Suppose, the application accepts values between -10 to +10 so using equivalence 
partitioning the values picked up for testing are zero, one positive value, one negative value. 
So the Equivalence Partitioning for this testing is  -10 to -1, 0, and 1 to 10. 

#17) Example Testing: It means real-time testing. Example Testing includes the real-
time scenario, it also involves the scenarios based on the experience of the testers. 

#18) Exploratory Testing: Exploratory Testing is informal testing performed by the 
testing team. The objective of this testing is to explore the application and looking for 
defects that exist in the application. Sometimes it may happen that during this testing major 
defect discovered can even cause a system failure. During Exploratory Testing, it is advisable 
to keep a track of what flow you have tested and what activity you did before the start of 
the specific flow. 

An Exploratory Testing technique is performed without documentation and test cases. 

#20) Functional Testing: This type of testing ignores the internal parts and focuses 
only on the output to check if it is as per the requirement or not. It is a Black-box type 
testing geared to the functional requirements of an application.  

#21) Graphical User Interface (GUI) Testing: The objective of this GUI Testing is to 
validate the GUI as per the business requirement. The expected GUI of the application is 
mentioned in the Detailed Design Document and GUI mockup screens. The GUI Testing 
includes the size of the buttons and input field present on the screen, alignment of all text, 
tables, and content in the tables. 

It also validates the menu of the application, after selecting different menu and menu items, 
it validates that the page does not fluctuate and the alignment remains same after hovering 
the mouse on the menu or sub-menu. 

#22) Gorilla Testing: Gorilla Testing is a testing type performed by a tester and 
sometimes by the developer the as well. In Gorilla Testing, one module or the functionality 
in the module is tested thoroughly and heavily. The objective of this testing is to check the 
robustness of the application. 

#23) Happy Path Testing: The objective of Happy Path Testing is to test an 
application successfully on a positive flow. It does not look for negative or error conditions. 
The focus is only on the valid and positive inputs through which application generates the 
expected output. 

#24) Incremental Integration Testing: Incremental Integration Testing is a Bottom-up 
approach for testing i.e continuous testing of an application when new functionality is 
added. Application functionality and modules should be independent enough to test 
separately. This is done by programmers or by testers. 

#25) Install/Uninstall Testing: Installation and Uninstallation Testing is done on full, 
partial, or upgrade install/uninstall processes on different operating systems under different 
hardware or software environment. 



34 

 

#26) Integration Testing: Testing of all integrated modules to verify the combined 
functionality after integration is termed as Integration Testing. Modules are typically code 
modules, individual applications, client and server applications on a network, etc. This type 
of testing is especially relevant to client/server and distributed systems. 

#27) Load Testing: It is a type of Non-Functional Testing and the objective of Load 
Testing is to check how much load or maximum workload a system can handle without any 
performance degradation. Load Testing helps to find the maximum capacity of the system 
under specific load and any issues that cause software performance degradation. Load 
testing is performed using tools like JMeter, LoadRunner, WebLoad, Silk performer, etc. 

#28) Monkey Testing: Monkey Testing is carried out by a tester assuming that if the 
monkey uses the application then how random input, values will be entered by the Monkey 
without any knowledge or understanding of the application. 

The objective of Monkey Testing is to check if an application or system gets crashed by 
providing random input values/data. Monkey Testing is performed randomly and no test 
cases are scripted. 

#29) Mutation Testing: Mutation Testing is a type of white box testing in which the 
source code of one of the program is changed and verifies whether the existing test cases 
can identify these defects in the system. The change in the program source code is very 
minimal so that it does not impact the entire application, only the specific area having the 
impact and the related test cases should able to identify those errors in the system. 

#30) Negative Testing: Testers having the mindset of “attitude to break” and using 
Negative Testing they validate that if system or application breaks. A Negative Testing 
technique is performed using incorrect data, invalid data or input. It validates that if the 
system throws an error of invalid input and behaves as expected. 

#31) Non-Functional Testing: It is a type of testing for which every organization 
having a separate team which usually called as Non-Functional Test (NFT) team or 
Performance team. Non-Functional Testing involves testing of non-functional requirements 
such as Load Testing, Stress Testing, Security, Volume, Recovery Testing, etc. The objective 
of NFT testing is to ensure whether the response time of software or application is quick 
enough as per the business requirement. 

It should not take much time to load any page or system and should sustain during peak 
load. 

#32) Performance Testing: This term is often used interchangeably with ‘stress' and 
‘load' testing. Performance Testing is done to check whether the system meets the 
performance requirements. Different performance and load tools are used to do this 
testing. 

#33) Recovery Testing: It is a type of testing which validates how well the application 
or system recovers from crashes or disasters. Recovery Testing determines if the system is 



35 

 

able to continue the operation after a disaster. Assume that application is receiving data 
through the network cable and suddenly that network cable has been unplugged. Sometime 
later, plug the network cable; then the system should start receiving data from where it lost 
the connection due to network cable unplugged. 

#34) Regression Testing: Testing an application as a whole for the modification in any 
module or functionality is termed as Regression Testing. It is difficult to cover all the system 
in Regression Testing, so typically Automation Testing Tools are used for these types of 
testing. 

#35) Risk-Based Testing (RBT): In Risk-Based Testing, the functionalities or 
requirements are tested based on their priority. Risk-Based Testing includes testing of highly 
critical functionality, which has the highest impact on business and in which the probability 
of failure is very high. The priority decision is based on the business need, so once priority is 
set for all functionalities then high priority functionality or test cases are executed first 
followed by medium and then low priority functionalities. The low priority functionality may 
be tested or not tested based on the available time. 

The Risk-Based Testing is carried out if there is insufficient time available to test entire 
software and software needs to be implemented on time without any delay. This approach 
is followed only by the discussion and approval of the client and senior management of the 
organization. 

#36) Sanity Testing: Sanity Testing is done to determine if a new software version is 
performing well enough to accept it for a major testing effort or not. If an application is 
crashing for the initial use then the system is not stable enough for further testing. Hence a 
build or an application is assigned to fix it. 

#37) Security Testing: It is a type of testing performed by a special team of testers. A 
system can be penetrated by any hacking way. Security Testing is done to check how the 
software or application or website is secure from internal and external threats. This testing 
includes how much software is secure from the malicious program, viruses and how secure 
and strong the authorization and authentication processes are. It also checks how software 
behaves for any hackers attack and malicious programs and how software is maintained for 
data security after such a hacker attack. 

#38) Smoke Testing: Whenever a new build is provided by the development team 
then the Software Testing team validates the build and ensures that no major issue exists. 
The testing team ensures that the build is stable and a detailed level of testing is carried out 
further. Smoke Testing checks that no show stopper defect exists in the build which will 
prevent the testing team to test the application in detail. 

If testers find that the major critical functionality is broken down at the initial stage itself 
then testing team can reject the build and inform accordingly to the development team. 
Smoke Testing is carried out to a detailed level of any Functional or Regression Testing. 



36 

 

#39) Static Testing: Static Testing is a type of testing which is executed without any 
code. The execution is performed on the documentation during the testing phase. It 
involves reviews, walkthrough, and inspection of the deliverables of the project. Static 
Testing does not execute the code instead of the code syntax, naming conventions are 
checked. Static Testing is also applicable for test cases, test plan, design document. It is 
necessary to perform static testing by the testing team as the defects identified during this 
type of testing are cost-effective from the project perspective. 

#40) Stress Testing: This testing is done when a system is stressed beyond its 
specifications in order to check how and when it fails. This is performed under heavy load 
like putting large number beyond storage capacity, complex database queries, continuous 
input to the system or database load. 

#41) System Testing: Under System Testing technique, the entire system is tested as 
per the requirements. It is a Black-box type Testing that is based on overall requirement 
specifications and covers all the combined parts of a system. 

#42) Unit Testing: Testing of an individual software component or module is termed 
as Unit Testing. It is typically done by the programmer and not by testers, as it requires 
detailed knowledge of the internal program design and code. It may also require developing 
test driver modules or test harnesses. 

#43) Usability Testing: Under Usability Testing, User-friendliness check is done. The 
application flow is tested to know if a new user can understand the application easily or not, 
Proper help documented if a user gets stuck at any point. Basically, system navigation is 
checked in this testing. 

#44) Vulnerability Testing: The testing which involves identifying weakness in the 
software, hardware and the network is known as Vulnerability Testing. Malicious programs, 
the hacker can take control of the system, if it is vulnerable to such kind of attacks, viruses, 
and worms. 

So it is necessary to check if those systems undergo Vulnerability Testing before production. 
It may identify critical defects, flaws in the security. 

#45) Volume Testing: Volume Testing is a type of Non-Functional Testing performed 
by the Performance Testing team. The software or application undergoes a huge amount of 
data and Volume Testing checks the system behavior and response time of the application 
when the system came across such a high volume of data. This high volume of data may 
impact the system’s performance and speed of the processing time. 

#46) White Box Testing: White Box Testing is based on the knowledge about the 
internal logic of an application's code. It is also known as Glass box Testing. Internal 
software and code working should be known for performing this type of testing. Under 
these tests are based on the coverage of code statements, branches, paths, conditions, etc. 

 



37 

 

The above-mentioned Software Testing Types are just a part of all different testing types. 
There are more than 100+ types of testing, but all testing types are not used in all types of 
projects.  

 

6. AUTOMATION TESTING TUTORIAL: WHAT IS, PROCESS, BENEFITS & TOOLS; 

SOFTWARE TEST AUTOMATION OVERVIEW  

Automated software testing is carried out with the help of automation testing tools. 
Automation testing tool is a software application itself with the help of which a tester can 
write testing scripts and then use this software to test the actual system under testing. 
Automation tools are used to automate certain sections of manual testing. The biggest 
advantage of automation testing is that it saves a lot of time and software application can 
be thoroughly tested in a short span of time. Automation testing tools are available to 
perform regression, load and stress testing. However, automation testing cannot completely 
replace manual testing. Beside time, automation testing saves money and effort and helps 
in improving the accuracy of software. 

All aspects of software cannot be covered via automation testing. However, automation 
testing is of great help in testing GUI aspects, database connectivity etc. It is best to go for 
automation testing when you are working on large and complex projects where there is a 
necessity to test certain areas frequently. Automation testing is also good for testing those 
applications which will be eventually used by several concurrent users. This form of testing 
helps in saving a lot of time so the team gets more time to focus on the quality of the 
software. 

In order to perform automation testing, you need to know the following details: 

1. Which sections of the software require automation testing 

2. Which tools will be ideal for this purpose? 

3. The process of writing test scripts and executing them 

4. You should be able to identify potential bug and know how to create result reports. 

It is good to include automation testing to improve the quality of the software but 
automation testing is not the only way of achieving quality and in no way, it should be 
considered a replacement for inspections and walkthrough procedures. Many organizations 
still consider that automation testing is the last way of detecting defects that may have gone 
unnoticed. 

SOFTWARE TEST AUTOMATION STRATEGY 

There is no doubt that automation testing makes life a lot easier but just having the right 
tools is not sufficient to achieve success in automation testing. It is very important to 



38 

 

develop a strategy for automation testing that would clearly define which sections of the 
software require testing, how this task would be carried out, how and where the scripts will 
be maintained, how the project would benefit from this activity and how much money 
would be saved in this process. The more specific you are in defining the strategy; the more 
successful you will be in achieving your testing goals. 

While defining the strategy it is important to break down your aim into smaller goals and 
check if you are able to achieve what you require with the help of an automation test tool. If 
the project is too big and you try to test complex areas in the first go then there are chances 
of making mistakes. So, it is wise to start small initially and then gradually grow. 

Automation testing can be carried out in unit testing, integration and system level testing. It 
is always better to uncover maximum defects in early stages of software development 
hence it is better to plan automation testing as early as it is possible. 

SOFTWARE TEST AUTOMATION AND IT’S RETURN OF INVESTMENT (ROI) 

ROI for Software Test Automation is calculated to know how the company would benefit by 
incorporating this methodology in its testing processes. It gives a fair idea about the cost 
saving, scope of improvement in efficiency and software quality. 

ROI = (Gain- invested amount)/invested amount 

The most commonly used methods for calculation of ROI for automation testing are: 

• Simple ROI calculation to know how the company would benefit from cost saving. 
This calculation is of great importance when a company wants to know how it would benefit 
on monetary basis by incorporating automation testing. The cost of investment would 
include the amount spent on acquiring the license, hardware, and training for staff, 
development of scripts, their maintenance and analysis. 

• Efficiency ROI calculation tells about the benefits in terms of increased efficiency. 
Unlike simple ROI, this calculation only looks at time investment gains. When a company 
already has the automation, testing tools and has been using it for quite some time, there is 
no need for it to know about Simple ROI calculations because it is not going to make any 
fresh monetary investment in this case. 

• Risk Reduction ROI calculation indicates reduction in risk and scope of improvement 
of quality. Automation testing saves time and provides team with more time to carry out 
analysis and carry out ad hoc and exploratory testing this leads to thorough coverage 
thereby reducing the chances of failure. 

TEST CASES TO AUTOMATE 

It is difficult and not wise to automate all testing. So, one must clearly determine which test 
cases should be automated. You must first look at those sections of the software that 
require repeated testing. Test cases that have to be executed repeatedly and require a lot of 



39 

 

data for execution should be automated. Besides, repetitive tests, you should also focus on 
automating: 

1. Test cases that require multiple data sets for execution and are difficult to conduct 
manually. 

2. Load and stress tests that are difficult to conduct manually. 

3. Tests that are executed to check the performance of software on multiple platforms. 

4. GUI testing. 

 

TEST CASES NOT TO AUTOMATE 

There are certain test cases that are not preferred to be automated. Such as: 

1. Test cases that would be executed only once or quite infrequently. 

2. Ad hoc or exploratory testing cannot be conducted with the help of automation 
testing. 

3. Test cases that require only manual execution or a human opinion. 

 

AUTOMATED TESTING PROCESS/ HOW DO WE AUTOMATE? 

Automation of a test case begins with defining what you want to test. Always go for those 
test cases that are independent and stable. It is always better to execute smaller 
independent test cases rather than few big and complex ones. Large scripts are difficult to 
maintain and can be difficult to execute if any major changes have been made to the 
software. If a test script requires a change then it is always easier to make changes to a 
shorter script than a longer one. Before automating a test case it is better to execute the 
test case manually. Since automated test cases are those that one needs to use for 
repetitive testing therefore before designing such a test case it is better to execute it 
manually and note down all the steps that you would like to record or put down in your test 
script. This will help you design all the conditions required for through testing of a function. 
Ensure that you have taken care of all validations in your test scripts. If you are planning to 
test database transactions, then you need to make sure that database has the necessary 
data required for testing. 

Before executing the test case it is important to understand how the automated software 
tool has been designed. This is important because once you start testing you don’t want to 
get interrupted by unknown issues. 



40 

 

Following steps are followed in an Automation Process

 

Test tool selection: Test Tool selection largely depends on the technology the Application 
Under Test is built on. For instance, QTP does not support Informatica. So QTP cannot be 
used for testing Informatica applications. It's a good idea to conduct a Proof of Concept of 
Tool on AUT. 

Define the scope of Automation: The scope of automation is the area of your Application 
Under Test which will be automated.  

Following points help determine scope: 

The features that are important for 
the business 

Scenarios which have a large 
amount of data 

Common functionalities across 
applications 

Technical feasibility 

The extent to which business 
components are reused 

The complexity of test cases 

Ability to use the same test cases 
for cross-browser testing 

Planning, Design, and 
Development 

During this phase, you create an 
Automation strategy & plan, which 
contains the following details- 

Automation tools selected 

Framework design and its features 

In-Scope and Out-of-scope items of 
automation 

Automation testbed preparation 

Schedule and Timeline of scripting 
and execution 

Deliverables of Automation Testing 

 

Test Execution: Automation Scripts are executed during this phase. The scripts need input 
test data before there are set to run. Once executed they provide detailed test reports. 
Execution can be performed using the automation tool directly or through the Test 
Management tool which will invoke the automation tool. 

 

https://www.guru99.com/images/testautomationprocess.png


41 

 

EXAMPLE:  

Quality center is the Test Management tool which in turn will invoke QTP for execution of 
automation scripts. Scripts can be executed in a single machine or a group of machines. The 
execution can be done during the night, to save time. 

Maintenance: As new functionalities are added to the System Under Test with successive 
cycles, Automation Scripts need to be added, reviewed and maintained for each release 
cycle. Maintenance becomes necessary to improve the effectiveness of Automation Scripts. 

 

FRAMEWORK FOR AUTOMATION 

A framework is set of automation guidelines which help in: 

Maintaining consistency of Testing 

Improves test structuring 

Minimum usage of code 

Less Maintenance of code 

Improve re-usability 

Non Technical testers can be 
involved in code 

The training period of using the 
tool can be reduced 

Involves Data wherever 
appropriate 

 

There are four types of frameworks used in automation software testing: 

Data Driven Automation 
Framework 

Keyword Driven Automation 
Framework 

Modular Automation Framework 

Hybrid Automation Framework 

Automation Tool Best Practices 

To get maximum ROI of automation, observe the following: The scope of Automation needs 
to be determined in detail before the start of the project. This sets expectations from 
Automation right; Select the right automation tool: A tool must not be selected based on its 
popularity, but it's fit to the automation requirements; Choose an appropriate framework 

Scripting Standards: Standards have to be followed while writing the scripts for 
Automation. Some of them are: 

• Create uniform scripts, comments, 
and indentation of the code 

• Adequate Exception handling - 
How error is handled on system 

failure or unexpected behavior of 
the application. 

• User-defined messages should be 
coded or standardized for Error 
Logging for testers to understand. 



42 

 

• Measure metrics- Success of 
automation cannot be determined 
by comparing the manual effort 
with the automation effort but by 
also capturing the following 
metrics. 

• Percent of defects found 

• The time required for automation 
testing for each and every release 
cycle 

• Minimal Time is taken for release 
• Customer Satisfaction Index 
• Productivity improvement 
• The above guidelines if observed 

can greatly help in making your 
automation successful. 

Following are benefits of automated testing: 

• 70% faster than the manual testing 
• Wider test coverage of application 

features 
• Reliable in results 
• Ensure Consistency 
• Saves Time and Cost 
• Improves accuracy 
• Human Intervention is not 

required while execution 

• Increases Efficiency 
• Better speed in executing tests 
• Re-usable test scripts 
• Test Frequently and thoroughly 
• More cycle of execution can be 

achieved through automation 
• Early time to market

 

HOW TO CHOOSE AN AUTOMATION TOOL? 

Automation tools have a very positive impact on the efficiency and productivity of software. 
It is important to use software test automation tools in order to simplify testing. Certain 
manual testing processes can be very time consuming. With the help of automation tools 
you can accomplish more in less time. However, never depend completely on automation 
tools. You must clearly define what needs to be tested manually and where there is a need 
to implement automation testing tools. Most well reputed automation testing tools come 
with their prices, but it is worth deploying them in projects as they are of great help. 

Selecting the right tool can be a tricky task. Following criterion will help you select the best 
tool for your requirement- 

• Environment Support 
• Ease of use 
• Testing of Database 
• Object identification 
• Image Testing 
• Error Recovery Testing 
• Object Mapping 
• Scripting Language Used 

• Support for various types of test - 
including functional, test 
management, mobile, etc... 

• Support for multiple testing 
frameworks 

• Easy to debug the automation 
software scripts 

• Ability to recognize objects in any 
environment 



43 

 

• Extensive test reports and results • Minimize training cost of selected 
tools 

 

Tool selection is one of biggest challenges to be tackled before going for automation. First, 
Identify the requirements, explore various tools and its capabilities, set the expectation 
from the tool and go for a Proof Of Concept. 

 

AUTOMATION TESTING TOOLS 

There are tons of Functional and Regression Testing Tools available in the market. Here are 
some of the best tools currently available:  

Ranorex Studio: Ranorex Studio is an all-in-one tool for automating functional UI 
tests, regression tests, data-driven tests and much more. Ranorex Studio includes an easy to 
use click-and-go interface to automate tests for web, desktop, and mobile applications. 

Features: Functional UI and end-to-end testing on desktop, web, and mobile; 
Cross-browser testing; SAP, ERP, Delphi and legacy applications. ; iOS and 
Android; Run tests locally or remotely, in parallel or distribute on a Selenium 
Grid; Robust reporting 

Mabl: mabl delivers scriptless end-to-end test automation, integrated with your 
delivery pipeline, so you can focus on improving your app. 

Features: Proprietary machine learning models automatically identify and 
surface application issues; Tests are automatically repaired when UI changes; 
Automated regression insights on every build 

Selenium: It is a software testing tool used for Regression Testing. It is an open 
source testing tool that provides playback and recording facility for Regression Testing. 
The Selenium IDE only supports Mozilla Firefox web browser. It provides the provision to 
export recorded script in other languages like Java, Ruby, RSpec, Python, C#, etc. It can be 
used with frameworks like JUnit and TestNG 

It can execute multiple tests at a time; Autocomplete for Selenium commands 
that are common; Walkthrough tests; Identifies the element using id, name, 
X-path, etc.; Store tests as Ruby Script, HTML, and any other format; It 
provides an option to assert the title for every page; It supports selenium 
user-extensions.js file; It allows to insert comments in the middle of the script 
for better understanding and debugging 

QTP (MicroFocus UFT): QTP is widely used for functional and regression testing, it 
addresses every major software application and environment. To simplify test creation and 
maintenance, it uses the concept of keyword driven testing. It allows the tester to build test 



44 

 

cases directly from the application. It is easier to use for a non-technical person to adapt to 
and create working test cases. It fix defects faster by thoroughly documenting and 
replicating defects for developer. 

Collapse test creation and test documentation at a single site; Parameterization is 
easy than WinRunner; QTP supports .NET development environment; It has better 
object identification mechanism; It can enhance existing QTP scripts without 
"Application Under Test" is available, by using the active screen;  

Rational Functional Tester: It is an Object-Oriented automated Functional 
Testing tool that is capable of performing automated functional, regression, data-driven 
testing and GUI testing. The main features of this tool are: It supports a wide range of 
protocols and applications like Java, HTML, NET, Windows, SAP, Visual Basic, etc.; It can 
record and replay the actions on demand; It integrates well with source control 
management tools such as Rational Clear Case and Rational Team Concert integration; It 
allows developers to create keyword associated script so that it can be re-used; 
Eclipse Java Developer Toolkit editor facilitates the team to code test scripts in Java with 
Eclipse; It supports custom controls through proxy SDK (Java/.Net); It supports version 
control to enable parallel development of test scripts and concurrent usage by 
geographically distributed team 

WATIR: It is an open source testing software for regression testing. It enables you to 
write tests that are easy to read and maintain. Watir supports only internet explorer on 
windows while Watir webdriver supports Chrome, Firefox, IE, Opera, etc. 

It supports multiple browsers on different platforms; Rather than using proprietary 
vendor script, it uses a fully-featured modern scripting language Ruby; It supports 
your web app regardless of what it is developed in 

SilkTest: Silk Test is designed for doing functional and regression testing. For e-
business application, silk test is the leading functional testing product. It is a product of 
Segue Software takeover by Borland in 2006. It is an object-oriented language just like C++. 
It uses the concept of an object, classes, and inheritance. Its main feature includes: It 
consists of all the source script files; It converts the script commands into GUI commands. 
On the same machine, commands can be run on a remote or host machine; To identify the 
movement of the mouse along with keystrokes, Silktest can be executed. It can avail both 
playback and record method or descriptive programming methods to get the dialogs; It 
identifies all controls and windows of the application under test as objects and determines 
all of the attributes and properties of each window 

 

 

 



45 

 

 

 

 

7. AUTOMATION TESTING VS. MANUAL TESTING: WHAT'S THE DIFFERENCE? 

 

Both manual and automation testing have their own share of benefits and limitations. 
Below is a comparison between these two types of testing. 

Manual Testing Automation Testing 

Manual testing is a type of testing in 
which test case execution is performed 
manually by humans. 

Automation testing is a type of testing in which 
automated test case execution is performed 
using different automation tools. 

Manual test case execution is very 
tedious and time consuming. 

Automated test case execution is very fast, only 
the initial test framework and test script 
creation takes time. 

It is more suited for user-interface, adhoc 
and exploratory testing. 

It is not suited for user-interface, adhoc and 
exploratory testing. 

Manual testing is not suitable for 
performing load testing and testing which 
requires frequent test executions. 

Load testing can be done using automation 
testing. Also, it is suited for regression tests and 
test which require frequent test case execution. 

The manual test cases are required to be 
run sequentially. 

Automated test scripts can be run in parallel as 
well using distributed testing across different 
machines. 

It is considered less reliable because of 
human error. 

Following right approach and standards for test 
script creation leads to reliable automated 
testing. 

 

WHAT ARE THE DIFFERENT TEST DESIGN TECHNIQUES? 

Test design techniques are standards of test designing that allow the creation of systematic 
and widely accepted test cases. These techniques are based on the different scientific 
models and over the years experiences of many QA professionals. 
The test design techniques can be broadly categorized into two parts – “Static test design 
technique” and “Dynamic test design technique”. 

STATIC TEST DESIGN TECHNIQUES 

The Static test design techniques are the testing techniques that involve testing without 
executing the code or the software application. So, basically static testing deals with Quality 
Assurance, involving reviewing and auditing of code and other design documents. The 



46 

 

various static test design techniques can be further divided into two parts – “Static testing 
performed manually” and “Static testing using tools”. 

1.1. MANUAL STATIC DESIGN TECHNIQUES 

1.1.1. Walk through – A Walk-through is step by step presentation of different 
requirement and design documents by their authors with the intent of finding defects or 
any missing pieces in the documents. 

1.1.2 Informal reviews – As the name suggests, an informal review done by an 
individual without any process or documentation. 

1.1.3 Technical reviews – A technical review involves reviewing the technical 
approach used during the development process. It is more of a peer review activity and less 
formal as compared to audit and inspection. 

1.1.4 Audit – An audit is a formal evaluation of the compliance of the different 
processes and artifacts with standards and regulations. It is generally performed by an 
external or independent team or person. 

1.1.5 Inspection – An inspection is a formal and documented process of reviewing 
the different documents by experts or trained professionals. 

1.1.6 Management review – It is a review performed on the different management 
documents like project management plans, test plans, risk management plans etc. 

1.2. STATIC DESIGN TECHNIQUES USING TOOLS (AUTOMATED) 

2.1 Static analysis of code – The static analysis techniques for source code evaluation 
using tools are:  

a) Control flow analysis – The control flow analysis requires analysis of all possible 
control flows or paths in the code. 

b) Data flow analysis – The data flow analysis requires the analysis of data in the 
application and its different states. 

c) Compliance to coding standard – This evaluates the compliance of the code with 
the different coding standards. 

d) Analysis of code metrics – The tool used for static analysis is required to evaluate 
the different metrics like lines of code, complexity, code coverage etc. 

DYNAMIC TEST DESIGN TECHNIQUES 

Dynamic test design techniques involve testing by running the system under test. In this 
technique, the tester provides input data to the application and executes it, in order to 
verify its different functional and non-functional requirements. 



47 

 

a) Specification-based – Specification-based test design techniques are also referred to 
as black box testing. These involve testing based on the specification of the system 
under test without knowing its internal architecture. The different types of 
specification-based test design or black box testing techniques are – “Equivalence 
partitioning”, “Boundary value analysis”, “Decision tables”, “Cause-effect graph”, 
“State transition testing” and “Use case testing”. 

b) Structure based – Structure-based test design techniques are also referred to 
as white box testing. In these techniques, the knowledge of code or internal 
architecture of the system is required to carry out the testing. The various kinds of 
testing structure-based or white testing techniques are – “Statement testing”, 
“Decision testing/branch testing”, “Condition testing”, “Multiple condition testing”, 
“Condition determination testing” and “Path testing”. 

c) Experienced based – The experienced based techniques as the name suggest does 
not require any systematic and exhaustive testing. These are completely based on 
the experience or intuition of the tester. The two most common forms of 
experienced-based testing are – Adhoc testing and exploratory testing. 

 

8. WHAT IS REGRESSION TESTING? DEFINITION, TOOLS, METHOD, AND 
EXAMPLE 

 

Regression Testing is a type of testing that is done to verify that a code change in the 
software does not impact the existing functionality of the product. This is to make sure the 
product works fine with new functionality, bug fixes or any change in the existing feature. 
Previously executed test cases are re-executed in order to verify the impact of change. 

Regression Testing is a Software Testing type in which test cases are re-executed in order to 
check whether the previous functionality of the application is working fine and the new 
changes have not introduced any new bugs. 

This test can be performed on a new build when there is a significant change in the original 
functionality that too even in a single bug fix. 

Regression means retesting the unchanged parts of the application. 

REGRESSION TEST OVERVIEW 

Regression test is like a verification method. Test cases are generally automated as test 
cases are required to execute again and again and running the same test cases again and 
again manually is time-consuming and tedious one too. 

Exercise: 



48 

 

 Consider a product X, in which one of the functionality is to trigger confirmation, 
acceptance, and dispatched emails when Confirm, Accept and Dispatch buttons are clicked. 

Some issue occurs in the confirmation email and in order to fix the same, some code 
changes are done. In this case, not only the Confirmation emails need to be tested but 
Acceptance and Dispatched emails also needs to be tested to ensure that the change in the 
code has not affected them. 

Regression Testing is not dependent on any programming language like Java, C++, C#, etc. It 
is a testing method which is used to test the product for modifications or for any updates 
being done. It verifies that any modification in a product does not affect the existing 
modules of the product. Verifying that the bugs are fixed and the newly added features 
have not created any problem in the previous working version of the software. 

Testers perform Functional Testing when a new build is available for verification. The intent 
of this test is to verify the changes made in the existing functionality and the newly added 
functionality as well. When this test is done, the tester should verify whether the existing 
functionality is working as expected and the new changes have not introduced any defect in 
functionality that was working before this change. 

Regression test should be a part of the Release Cycle and must be considered in the test 
estimation. 

 

WHEN TO PERFORM THIS TEST? 

Regression Testing is usually performed after verification of changes or new functionality. 
But this is not the case always. For the release that is taking months to complete, regression 
tests must be incorporated in the daily test cycle. For weekly releases, regression tests can 
be performed when the Functional Testing is over for the changes. Regression checking is a 
variation of retest (which is simply to repeat a test). When Retesting, the reason can be 
anything. Say, you were testing a particular feature and it was the end of the day- you could 
not finish testing and had to stop the process without deciding if the test passed/failed. The 
next day when you come back, you perform the test once more – that means you are 
repeating a test you performed before. The simple act of repeating a test is a Retest. 

Regression test at its core is a retest of sorts. It is only for the special occasion that 
something in the application/code has changed. It might be code, design or anything at all 
that dictates the overall framework of the system. 

A Retest that is conducted in this situation to make sure that the said change has not made 
an impact on anything that was already working before is called Regression Test. The most 
common reasons why this might be conducted are because new versions of the code have 
been created (increase in scope/requirement) or bugs have been fixed. 



49 

 

 

To perform the test execution do we need a tool? How is Regression Testing performed? 
Can this Testing be performed manually? 

To begin with, Test execution is a simple act of using your Test cases and performing those 
steps on the AUT, supplying the test data and comparing the result obtained on the AUT 
with the expected result mentioned in your test cases.  Depending on the comparison 
result, we set the status of the test case pass/fail. Test execution is as simple as that, there 
are no special tools necessary for this process. 

Automated Regression Test is the testing area where we can automate most of the testing 
efforts. We run all the previously executed test cases on a new build. This means that we 
have a test case set available and running these test cases manually is time-consuming. We 
know the expected results, so automating these test cases is time-saving and is an efficient 
regression test method. The extent of automation depends upon the number of test cases 
that are going to remain applicable overtime. 

If test cases are varying from time to time, the application scope goes on increasing and 
then automation of regression procedure will be a waste of time. 

Most of the Regression test tools are record and playback type.  You will record the test 
cases by navigating through the AUT (application under test) and verify whether the 
expected results are coming or not. 

Recommended Tool 

#1) Ranorex Studio: Enhance Software Quality and maximize your resources with this 
powerful Automated Regression Testing tool. You can execute more test cases in a fraction 
of the time with Ranorex which is up to 78% efficiency increase over Manual Testing. 

Other Tools 

• Selenium 
• Katalon Studio 
• AdventNet 

QEngine 

• Regression Tester 
• vTest 
• Watir 
• actiWate 

• Rational 
Functional Tester 

• SilkTest 
• TimeShiftX

Most of these are Functional and Regression test tools. 

Adding and updating Regression test cases in an Automation test suite is a cumbersome 
task. While selecting an Automation tool for Regression tests, you should check if the tool 
allows you to add or update the test cases easily. In most cases, we need to update 
automated Regression test cases frequently due to frequent changes in the system. 



50 

 

WHY THE REGRESSION TEST? 

Regression is initiated when a 
programmer fixes any bug or adds a new 
code for new functionality to the system. 
There can be many dependencies in the 
newly added and existing functionality. It 
is a quality measure to check whether 
the new code complies with the old code 
so that the unmodified code is not 
getting affected. Most of the time the testing team has the task to check the last-minute 
changes in the system. 

In such a situation, testing only affected application area is necessary to complete the 
testing process on time by covering all the major system aspects. 

This test is very important when there is a continuous change/improvement added in the 
application. The new functionality should not negatively affect the existing tested code. 
Regression is required to find the bugs that occurred because of a change in the code. If this 
testing is not done, the product might get critical issues in the live environment and that 
indeed can lead the customer into trouble. 

While testing any online website, a tester reports an issue that the Price of the Product is 
not shown correctly i.e. it shows a lesser price than the actual price of the Product, and it 
needs to be fixed soon. Once the developer fixes the issue, it needs to be re-tested and 
Regression Testing is also required as verifying the price at the reported page would have 
got corrected but it might be showing an incorrect price at the summary page where the 
total is shown along with the other charges or the mail sent to the customer still has the 
incorrect price. Now, in this case, the customer will have to bear the loss if this testing is not 
performed as the site calculates the total cost with the incorrect price and the same price 
goes to a customer by email. Once the customer accepts, the Product is sold online at a 
lower price, it will be a loss for the customer. 

So, this testing plays a big role and is very much required and important as well. 

TYPES OF REGRESSION TESTING: 

Unit Regression   Partial Regression   Complete Regression 

#1) Unit Regression: Unit Regression is done during the Unit Testing phase and code 
is tested in isolation i.e. any dependencies on the unit to be tested are blocked so that the 
unit can be tested individually without any discrepancy. 

#2) Partial Regression: Partial Regression is done to verify that the code works fine 
even when the changes have been done in the code and that unit is integrated with the 
unchanged or already existing code. 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2007/08/regression-testing.jpg


51 

 

#3)  Complete Regression: Complete Regression is done when a change in the code is 
done on a number of modules and also if the change impact of a change in any other 
module is uncertain. The product as a whole is regressed to check any changes because of 
the changed code. 

 

HOW MUCH REGRESSION IS REQUIRED? 

This depends upon the scope of newly added features. If the scope of a fix or feature is too 
large, then the application area getting affected is also quite large and the testing should be 
performed thoroughly including all the application test cases. But this can be effectively 
decided when the tester gets input from a developer about the scope, nature, and the 
amount of change. As these are repetitive tests, test cases can be automated so that a set of 
test cases alone can be easily executed on a new build.  

Regression test cases need to be selected very carefully so that maximum functionality is 
covered in a minimum set of test cases. These set of test cases need continuous 
improvements for newly added functionality. It becomes very difficult when the application 
scope is very huge and there are continuous increments or patches to the system. In such 
cases, selective tests need to be executed in order to save testing cost and time. These 
selective test cases are picked based on the enhancements done to the system and the 
parts where it can affect the most. 

WHAT DO WE DO IN REGRESSION CHECK? 

Re-run the previously conducted tests and compare the current results with previously 
executed test results. This is a continuous process performed at various stages throughout 
the software testing lifecycle. 

A best practice is to conduct a Regression test after the Sanity or Smoke Testing and at the 
end of Functional testing for a short release. 

In order to conduct effective testing, a regression Test Plan should be created. This plan 
should outline the regression testing strategy and the exit criteria. Performance Testing is 
also a part of this test to make sure that the system performance is not affected due to the 
changes made in the system components. 

Best practices: Run automated test cases every day in the evening so that any regression 
side effects can be fixed in the next day build. This way it reduces the release risk by 
covering almost all regression defects at an early stage rather than finding and fixing those 
at the end of the release cycle. 

 

 

 



52 

 

REGRESSION TESTING TECHNIQUES 

Retest all   Regression Test Selection  Test case Prioritization   Hybrid 

#1) Retest All: As the name itself suggests, the entire test cases in the test suite are 
re-executed to ensure that there are no bugs that have occurred because of a change in the 
code. This is an expensive method as it requires more time and resources when compared 
to the other techniques. 

#2) Regression Test Selection: In this method, test cases are selected from the test 
suite to be re-executed. Not the entire suite is re-executed. The selection of test cases is 
done on the basis of code change in the module. Test cases are divided into two categories, 
one is Reusable test cases and another one is Obsolete test cases. The reusable test cases 
can be used in future regression cycles whereas obsolete ones are not used in the upcoming 
regression cycles. 

#3) Test Case Prioritization: Test cases with high Priority are executed first than the 
ones with medium and low priority. The priority of test case depends on its criticality and its 
impact on the product and also on the functionality of the product which is used more 
often. 

#4) Hybrid: The hybrid technique is a combination of Regression test selection and 
Test case Prioritization. Rather than selecting the entire test suite, select only the test cases 
which are re-executed depending on their priority. 

 

HOW TO SELECT A REGRESSION TEST SUITE? 

Most of the bugs found in the production environment occur because of the changes did or 
bugs fixed at the eleventh hour i.e. the changes done at a later stage. The bug fix at the last 
stage might create other issues/bugs in the Product. That’s why Regression checking is very 
important before releasing a Product. 

Below is a list of test cases that can be used while performing this Test: 

• Functionalities which are frequently used. 
• Test cases that cover the module where the changes have been done. 
• Complex test cases. 
• Integration test cases which include all the major components. 
• Test cases for the core functionality or feature of the Product. 
• Priority 1 and Priority 2 test cases should be included. 
• Test cases that frequently fail or recent testing defects were found in the same. 

 

HOW TO PERFORM REGRESSION TESTING? 



53 

 

Now that we have established what regression means, it is apparent that it is testing also – 
simply repeating in a specific situation for a specific reason. Therefore, we can safely derive 
that the same method applies for testing in the first place can be applied to this too. 

Therefore, if testing can be done manually then Regression Testing can be too. The use of a 
tool is not mandatory. However, as time goes on applications get piled on with more and 
more functionality which keeps increasing the scope of regression. To make the most of the 
time, this testing is most often Automated. 

EXERCISE 1:  

Prepare a Test suite for Regression considering the points mentioned above > “How to select 
Regression Test suite”? 

Automate all the test cases of the test suite. 

Update the Regression suite whenever it is required like if any new defect which is not 
covered in the test case is found, and a test case for the same should be updated in the test 
suite so that the testing is not missed for the same next time. The regression test suite 
should be managed properly by continuously updating the test cases. 

Execute the Regression test cases whenever there is any change in the code, the bug is 
fixed, new functionality is added, an enhancement to the existing functionality is done, etc. 

Create a test execution Report which includes the Pass/Fails status of the executed test 
cases. 

 

EXERSICE 2: 

Please examine the below situation. Try and make observations yourself first and see what 
conclusions can be drawn from it.  

 

Release 1 Statistics   

Application Name XYZ 

Version/Release Number 1 

No. of Requirements (Scope) 10 



54 

 

Release 1 Statistics   

No. of Test Cases/Tests 100 

No. of days it takes to Develop 5 

No. of days it takes to Test 5 

No. of Testers 3 

Release 2 Statistics   

Application Name XYZ 

Version/Release Number 2 

No. of Requirements (Scope) 10+ 5 new Requirements 

No. of Test cases/Tests 100+ 50 new 

No. of days it takes to Develop 2.5 (since this half the amount of work than earlier) 

No. of days it takes to Test 5(for the existing 100 TCs) + 2.5 (for new Requirements) 

No. of Testers 3 

 

Release 3 Statistics   

Application Name XYZ 



55 

 

Release 3 Statistics   

Version/Release Number 3 

No. of Requirements (Scope) 10+ 5 + 5 new requirements 

No. of Test cases/Tests 100+ 50+ 50 new 

No. of days it takes to Develop 2.5 (since this half the amount of work than earlier) 

No. of days it takes to Test 7.5 (for the existing 150 TCs) + 2.5 (for new Requirements) 

No. of Testers 3 

 

The following are the observations can be made from the above situation: 

• As the releases grow the functionality grows. 
• The development time does not necessarily grow with releases, but the testing time 

does 
• No company/its management will be ready to invest more time in testing and less 

for development 

We cannot even reduce the time it takes to test by increasing the test team size because 
more people means more money and new people also means lots of training and maybe 
also a compromise in quality as the new people might not be at par with the required 
knowledge levels immediately. 

The other alternative clearly is to reduce the amount of regression. But that could be risky 
for the software product. 

For all these reasons, Regression Testing is a good candidate for Automation Testing, but it 
does not have to be done only that way. 

BASIC STEPS TO PERFORM REGRESSION TESTS 

Every time the software undergoes a change and a new version/release comes up, the 
following are the steps you can take to carry out this type of testing: 

 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/04/regression-testing-process.png


56 

 

 

• Understand what kind of changes have been made to the software 
• Analyze and determine what modules/parts of the software might be impacted – the 

development and BA teams can be instrumental in providing this information 
• Take a look at your test cases and determine if you will have to do a full, partial or 

unit regression. Identify the ones that will fit your situation 
• Schedule the time and test away! 

 

REGRESSION IN AGILE 

Agile is an adaptive approach that follows an iterative and incremental method. The product 
is developed in short iterations called sprint which lasts for 2- 4 weeks. In agile, there is a 
number of iterations, hence this testing plays a significant role as the new functionality or 
code change is done in the iterations. 

The Regression test suite should be prepared from the initial phase and should be updated 
with each sprint. 

In Agile, Regression check is covered under two categories: 

Sprint Level Regression  End to End Regression 

#1) Sprint Level Regression: Sprint Level Regression is done mainly for the new 
functionality or the enhancement that is done in the latest sprint. Test cases from the test 
suite are selected as per the newly added functionality or the enhancement that is done. 

#2) End-to-End Regression: End-to-End Regression includes all the test cases that are 
to be re-executed to test the complete product end to end by covering all the core 
functionalities of the Product. 

As Agile has short sprints and it goes on, it is very much required to automate the test suite, 
the test cases are executed again and that too needs to be completed in a short span of 
time. Automating the test cases reduces the time of execution and defect slippage. 

Advantages 

• It improves the quality of the Product. 
• It ensures that any bug fix or enhancement that is done does not impact the existing 

functionality of the Product. 
• Automation tools can be used for this testing. 
• It makes sure that issues that are already fixed do not occur again. 

Disadvantages 

• Though there are several advantages, there are some disadvantages as well. They 
are: 



57 

 

• It has to be done for a small change in the code as well because even a small change 
in the code can create issues in the existing functionality. 

• If in case automation is not used in the Project for this testing, it will be a time 
consuming and tedious task to execute the test cases again and again. 

 

REGRESSION OF GUI APPLICATION 

It is difficult to perform a GUI (Graphical User Interface) Regression test when the GUI 
structure is modified. The test cases written on old GUI either become obsolete or need to 
be modified. 

Re-using the regression test cases means GUI test cases are modified according to the new 
GUI. But this task becomes a cumbersome one if you have a large set of GUI test cases. 

Difference Between Regression And Re-testing 

Re-testing is done for the test cases which fail during the execution and the bug raised for 
the same has been fixed whereas Regression check is not limited to the bug fix as it covers 
other test cases as well to ensure that the bug fix has not impacted any other functionality 
of the Product. 

 

 

REGRESSION TEST PLAN TEMPLATE (TOC) 
1. Document History 

2. References 

3. Regression Test Plan 

3.1. Introduction 

3.2. Purpose 

3.3. Test Strategy 

3.4. Feature to be tested 

3.5. Resource 
Requirement 

3.5.1. Hardware 
Requirement 

3.5.2. Software 
Requirement 

3.6. Test Schedule 

3.7. Change Request 

3.8. Entry /Exit criteria 

3.8.1. Entry Criteria for 
this Testing 

3.8.2. Exit Criteria for this 
Testing 

3.9. 
Assumption/Constraints 

3.10. Test Cases 

3.11. Risk /Assumptions 

3.12. Tools 

4. Approval/Acceptance 

 

 

 



58 

 

 

 

Let's take a look at each of them in detail. 

#1) DOCUMENT HISTORY:  

Document history consists of a record of the first draft and all the updated ones in 
the below-given format. 

Version Date Author Comment 

1 DD/MM/YY ABC Approved 

2 DD/MM/YY ABC Updated for the added feature 

#2) REFERENCES:  

References column keep a track of all the reference documents used or required for 
the Project while creating a test plan. 

No Document Location 

1 SRS document Shared drive 

 

#3) REGRESSION TEST PLAN:  

3.1. Introduction: This document describes the change/update/enhancement in the 
Product to be tested and the approach used for this testing. All the code changes, 
enhancements, updates, added features are outlined to be tested. Test cases used for Unit 
Testing and Integration Testing can be used to create a test suite for Regression. 

3.2. Purpose: Purpose of Regression Test Plan is to describe what exactly and how 
testing would be performed to accomplish the results. Regression check is done to ensure 
that no other functionality of the product is hampered because of the code change. 

3.3. Test Strategy: Test Strategy describes the approach which will be used to 
perform this testing and that includes the technique that will be used, what will be the 
completion criteria, who will be performing which activity, who will write the test scripts, 
which regression tool will be used, steps to cover the risks like resource crunch, delay in 
production, etc. 



59 

 

3.4. Features to be tested: Feature/components of the product to be tested are 
listed here. In regression, all the test cases are re-executed or the ones which affect the 
existing functionality are chosen depending on the fix/update or enhancement done. 

3.5. Resource Requirement:  

3.5.1. Hardware Requirement: Hardware Requirement is identified here like 
computers, laptop, Modems, Mac book, Smartphone, etc. 

3.5.2. Software Requirement: Software Requirement is identified like which 
Operating system and browsers will be required. 

3.6. Test Schedule: Test schedule defines the estimated time for performing the 
testing activities. 

EXERCISE:  

How many resources will perform a testing activity and that too in how much time? 

3.7. Change Request: CR details are mentioned for which Regression would be 
performed. 

S.No CR Description Regression Test Suite 

1 
  

2 
  

 

3.8. Entry/Exit Criteria 

3.8.1. Entry Criteria for this testing: Entry criteria for the Product to start 
Regression check are defined. 

 

 

EXAMPLE:  

Coding changes/enhancement/addition of new feature should be completed. 

Regression test Plan should be approved. 

 

3.8.2. Exit Criteria for this testing: Here the exit criteria for Regression are 
defined. 



60 

 

EXAMPLE: 

 Regression testing should be completed. Any new critical bugs found during this testing 
should be closed.  

Test Report should be ready. 

 

 

3.9. Test Cases: Regression Test cases are defined here. 

3.10. Risk/Assumptions: Any risk & assumptions are identified and a contingency 
plan is prepared for the same. 

3.11. Tools: Tools to be used in the Project are identified. Such as: 

Automation tool Bug Reporting tool 

 

#4) Approval/Acceptance: Names and Designation of the people are listed here: 

Name Approved/Rejected Signature Date 

    

    

    

A lot of automation tools are available for automating the regression test cases, however, a 
tool should be selected as per the Project requirement. A tool should have the ability to 
update the test suite as the Regression test suite needs to be updated frequently. 

WHAT IS THE DIFFERENCE BETWEEN REGRESSION AND RETESTING 

Let’s see the difference between Regression and Retesting. This might be one of the top 5 
interview questions for freshers. Most of the testers have confusion with Regression and 
Retesting. Here in this post, we will show case the difference between regression and 
retesting with practical example to understand clearly. 

REGRESSION TESTING: Repeated testing of an already tested program, after 
modification, to discover any defects introduced or uncovered as a result of the changes in 
the software being tested or in another related or unrelated software components. 

• Usually, we do regression testing in the following cases: 
• New functionalities are added to the application 
• Change Requirement (In organizations, we call it as CR) 
• Defect Fixing 



61 

 

• Performance Issue Fix 
• Environment change (E.g.. Updating the DB from MySQL to Oracle) 

 

RETESTING: To ensure that the defects which were found and posted in the earlier build 
were fixed or not in the current build. 

Say, Build 1.0 was released. Test team found some defects (Defect Id 1.0.1, 1.0.2) and 
posted. 

Build 1.1 was released, now testing the defects 1.0.1 and 1.0.2 in this build is retesting. 

 

EXERCISE 1: 

Tto showcase the difference between Regression and Retesting, let’s take two scenarios. 

Case 1: Login Page – Login button not working (Bug) 

Case 2: Login Page – Added “Stay signed in” checkbox (New feature) 

In Case 1, Login button is not working, so tester reports a bug. Once the bug is fixed, testers 
test it to make sure whether the Login button is working as per the expected result. 

In Case 2, tester tests the new feature to ensure whether the new feature (Stay signed in) is 
working as intended. 

Case 1 comes under Re-testing. Here tester retests the bug which was found in the earlier 
build by using the steps to reproduce which were mentioned in the bug report. 

Also in the Case 1, tester tests other functionalities which are related to login button which 
we call as Regression Testing. 

Case 2 comes under Regression Testing. Here tester tests the new feature (Stay signed in) 
and also tests the relevant functionalities. Testing the relevant functionalities while testing 
the new features come under Regression Testing. 

 

EXAMPLE 1: 

Imagine, An Application Under Test has three modules namely Admin, Purchase and Finance. 
Finance module depends on Purchase module. If a tester found a bug on Purchase module 
and posted. Once the bug is fixed, the tester needs to do Retesting to verify whether the bug 
related to the Purchase is fixed or not and also tester needs to do Regression Testing to 
test the Finance module which depends on the Purchase module. 

 



62 

 

SOME OTHER DIFFERENCES BETWEEN REGRESSION AND RETESTING: 

Retesting done on failed test cases whereas Regression Testing done on passed test cases. 

Retesting makes sure that the original defect has been corrected whereas Regression 
Testing makes sure that there are no unexpected side effects. 

 

9. WHAT IS A TEST SCENARIO? 

 

A Test Scenario is defined as any functionality that can be tested. It is a collective set of test 
cases which helps the testing team to determine the positive and negative characteristics of 
the project. 

Test Scenario gives a high-level idea of what we need to test. 

 

EXERCISE 1: 

Test Scenario 

For an eCommerce Application, a few test scenarios 
would be 

Test Scenario 1: Check the Search Functionality 

Test Scenario 2: Check the Payments Functionality 

Test Scenario 3: Check the Login Functionality 

 

 

 

WHY DO WE WRITE TEST SCENARIO? 

The main reason to write a test scenario is to verify the complete functionality of the 
software application. It also helps you to ensure that the business processes and flows are 
as per the functional requirements.  

Test Scenarios can be approved by various stakeholders like Business Analyst, Developers, 
Customers to ensure the Application Under Test is thoroughly tested. It ensures that the 
software is working for the most common use cases.  



63 

 

They serve as a quick tool to determine the testing work effort and accordingly create a 
proposal for the client or organize the workforce. They help determine the most critical end-
to-end transactions or the real use of the software applications. 

Once these Test Scenarios are finalized, test cases can be easily derived from the Test 
Scenarios. 

 

EXAMPLE 1: BEST PRACTICES OF CREATING A TEST SCENARIO 

 

Test scenarios are mostly single line statement that tells what should be tested. Scenario 
description should be simple and easy to understand. A careful assessment of the stated 
requirements should be done. The required tools and resources for testing need to be 
accumulated before the beginning of the testing process. 

 

WHAT IS A TEST CASE? 

A TEST CASE is a set of actions executed to verify a particular feature or functionality of your 
software application. A Test Case contains test steps, test data, precondition, postcondition 
developed for specific test scenario to verify any requirement. The test case includes 
specific variables or conditions, using which a testing engineer can compare expected and 
actual results to determine whether a software product is functioning as per the 
requirements of the customer. 

 

https://www.guru99.com/images/1/011819_0751_TestCasevsT4.png


64 

 

 

EXAMPLES:  

Test cases for the Test Scenario: "Check the Login Functionality" would be 

Check system behavior when valid email id and password is entered. 

Check system behavior when invalid email id and valid password is entered. 

Check system behavior when valid email id and invalid password is entered. 

Check system behavior when invalid email id and invalid password is entered. 

Check system behavior when email id and password are left blank and Sign in entered. 

Check Forgot your password is working as expected 

Check system behavior when valid/invalid phone number and password is entered. 

Check system behavior when "Keep me signed" is checked 

 

WHY DO WE WRITE TEST CASES? 

Test cases help to verify conformance to applicable standards, guidelines and customer 
requirements. Helps you to validate expectations and customer requirements. Increased 
control, logic, and data flow coverage. You can simulate 'real' end user scenarios. Exposes 
errors or defects. When test cases are written for test execution, the test engineer's work 
will be organized better and simplified.  

 

EXAMPLE 1: BEST PRACTICES OF CREATING TEST CASES 



65 

 

 

Test Cases should be transparent and straightforward; Create Test Case by keeping the end 
user in the mind; Avoid test case repetition; You need to make sure that you will write test 
cases to check all software requirements mentioned in the specification document; Never 
assume functionality and features of your software application while preparing a test case; 
Test Cases must be readily identifiable 

 

Here, are significant differences between Test scenario and a Test Case 

Test Scenario Test Case 

A test scenario contains high-level 
documentation which describes an end to 
end functionality to be tested. 

Test cases contain definite test steps, data, 
expected results for testing all the features 
of an application. 

It focuses on more "what to test" than "how 
to test". 

A complete emphasis on "what to 
test" and "how to test.". 

Test scenarios are a one-liner. So, there is 
always the possibility of ambiguity during 
the testing. 

Test cases have defined a step, pre-
requisites, expected result, etc. Therefore, 
there is no ambiguity in this process. 

Test scenarios are derived from test artifacts Test case is mostly derived from test 

https://www.guru99.com/images/1/011819_0751_TestCasevsT3.png


66 

 

like BRS, SRS, etc. scenarios. Multiple Test case can be derived 
from a single Test Scenario 

It helps in an agile way of testing the end to 
end functionality 

It helps in exhaustive testing of an 
application 

Test scenarios are high-level actions. Test cases are low-level actions. 

Comparatively less time and resources are 
required for creating & testing using 
scenarios. 

More resources are needed for 
documentation and execution of test cases. 

 

KEY DIFFERENCE 

• Test Case is a set of actions executed to verify particular features or functionality 
whereas Test Scenario is any functionality that can be tested. 

• Test Case is mostly derived from test scenarios while Test Scenarios are derived from 
test artifacts like BRS and SRS. 

• Test Case helps in exhaustive testing of an application whereas Test Scenario helps in 
an agile way of testing the end to end functionality. 

• Test Cases are focused on what to test and how to test while Test Scenario is more 
focused on what to test. 

• Test Cases are low-level actions whereas Test Scenarios are high-level actions. 
• Test Case requires more resources and time for test execution while Test Scenario 

require fewer resources and time for test execution. 
• Test Case includes test steps, data, expected results for testing whereas Test 

Scenario includes an end to end functionality to be tested. 

  

10. HOW TO WRITE A TEST CASE  

Ideally, a test case management tool should be used for managing the test cases and test 
execution cycles, such as Quality Center (HP QC), JIRA etc. But for smaller projects, many 
organizations still prefer to use spreadsheets for avoiding the overhead of maintaining and 
configuring a tool. 

Test cases are created for a particular test scenario in order to verify whether the features 
of an application are working as intended or not. Test cases are the set of positive and 
negative executable steps of a test scenario which has a set of pre-conditions, test data, 
expected result, post-conditions and actual results. 



67 

 

Now we will see the different fields of a test case – mandatory as well optional. Assume we 
need to write test cases for a scenario. 

Let’s discuss the main fields of a test case (Example case 1):

PROJECT NAME: Name of the project the 
test cases belong to 

MODULE NAME: Name of the module the 
test cases belong to 

REFERENCE DOCUMENT: Mention the path of 
the reference documents (if any such as 
Requirement Document, Test Plan, Test 
Scenarios etc.,) 

CREATED BY: Name of the Tester who created 
the test cases 

DATE OF CREATION: When the test cases were 
created 

REVIEWED BY: Name of the Tester who 
created the test cases 

DATE OF REVIEW: When the test cases were 
reviewed 

EXECUTED BY: Name of the Tester who 
executed the test case 

DATE OF EXECUTION: When the test case was 
executed 

TEST CASE ID: Each test case should be 
represented by a unique ID. It’s good practice 
to follow some naming convention for better 
understanding and discrimination purpose. 

TEST SCENARIO: Test Scenario ID or title of the 
test scenario. 

TestCaseId – This field uniquely identifies a 
test case. It is mapped with automation scripts 
(if any) to keep a track of automation status. 
The same field can be used for mapping with 
the test scenarios for generating a traceability 
matrix. E.g. – GoogleSearch_1 

PRE-CONDITION: Conditions which needs to 
meet before executing the test case. 

TEST STEPS: Mention all the test steps in detail 
and in the order how it could be executed. 

TEST DATA: The data which could be used an 
input for the test cases. 

EXPECTED RESULT: The result which we expect 
once the test cases are executed. It might be 
anything such as Home Page, Relevant screen, 
Error message etc., 

POST-CONDITION: Conditions which needs to 
achieve when the test case was successfully 
executed. 

ACTUAL RESULT: The result which system 
shows once the test case was executed. 

STATUS: If the actual and expected results are 
same, mention it as Passed. Else make it as 
Failed. If a test fails, it has to go through 
the bug life cycle to be fixed. 

 

 

 

 

 



68 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXERCISE: CASE TEMPLATE 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Exam
ple scenario 1:    

Verify the login of   
Gm

ail account 

 1. Enter valid U
ser N

am
e and valid Passw

ord 
 2. Enter valid U

ser N
am

e and invalid Passw
ord 

 3. Enter invalid U
ser N

am
e and valid Passw

ord 
 4.  Enter invalid U

ser N
am

e and invalid Passw
ord 



69 

 

S.N
O

TEST CASE ID
Com

ponent/M
odule

Priority
Description

Pre-requisites 
Test S

 
 

 

1. W
rite th

 
 

 
http://goo

 
in the brow

 
URL bar an

 
 

enter.
2. O

nce 
google.com

 
 

launched, 
 

the search 
 

 
“Apple” in 

 
google sea

 

3. Press en
Brow

ser is launched

 
 

 
 

 
 

 

 
 

 
 

 
 

1
GoogleSearch_1

Search_Bar_M
odule

High

Verify that w
hen a 

user w
rites a search 

term
 and presses 

enter, search results 
should be displayed

Test Executed by

SCREEN
 N

AM
E

 
PREPARED BY
DESIGN

ATIO
N

DATE

 

 

 

 

 

 

 

 

 

 

 

 

EXERCISE: CASE TEMPLATE 2 

Example scenario 2: 

Verify Google Search bar module 

 

 

 

 

 

 

 

 

 

 

 

 



70 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main fields of Example 2 Case: 

TestCaseId – This field uniquely identifies a test case. It is mapped with automation scripts 
(if any) to keep a track of automation status. The same field can be used for mapping with 
the test scenarios for generating a traceability matrix. E.g. – GoogleSearch_1 

Component/Module – This field specifies the specific component or module that the test 
case belongs to. E.g. – Search_Bar_Module 

Priority – This field is used to specify the priority of the test case. Normally the conventional 
followed for specifying the priority is either High, Medium, Low or P0, P1, P3, P3, etc with P0 
being the most critical. 

Description – In this field describe the test case in brief. E.g. – Verify that when a user writes 
a search term and presses enter, search results should be displayed. 

Pre-requisites – In this field specify the conditions or steps that must be followed before the 
test steps executions. E.g. – Browser is launched. 

Test Steps – In this field, we mention each and every step for performing the test case. The 
test steps should be clear and unambiguous. E.g. Write the URL – http://google.com in the 
browser’s URL bar and press enter. 

Once google.com is launched, write the search term – “Apple” in the google search bar. 

Press enter. 



71 

 

TestData – In this field, we specify the test data used in the test steps. E.g. in the above test 
step example we could use the search term-“apple” as test data. 

Expected Result – This step marks the expected result after the test step execution. This 
used to assert the test case. E.g. – search results related to ‘apple’ should be displayed. 

Actual Result – In this step, we specify the actual result after the test step execution. E.g. – 
search results with ‘apple’ keyword were displayed. 

Status/Test Result – In this step, we mark the test case as pass or fail based on the expected 
and actual result. Possible values can be – Pass, Fail, Not executed. 

Test Executed by – In this field we specify the tester’s name who executed the test case and 
marked the test case as pass or fail. 

Apart from these mandatory fields, there are many optional fields that can be added as the 
organization or application’s need like  

Automation status – for marking test as automated or manual,  

TestScenarioId – for mapping test case with its test scenario,  

AfterTest step – for specifying any step required to be executed after performing the test 
case and  

TestType – to specify if the test is applicable for Regression, Sanity, Smoke, etc and 

Defected – id of the defect launched in any of the defect management tools, etc. 
 

LIST OF WEB APPLICATION TESTING EXAMPLE TEST CASES/SCENARIOS. 

 

Assumptions: Assume that your application supports the following functionalities 
• Forms with various fields 
• Child windows 
• The application interacts with the database 
• Various search filter criteria and display results 
• Image upload 
• Send email functionality 
• Data export functionality 

 

EXERCISE: GENERAL TEST SCENARIOS 

1. All mandatory fields should be validated and indicated by an asterisk (*) symbol. 
2. Validation error messages should be displayed properly in the correct position. 
3. All error messages should be displayed in the same CSS style (For Example, using red 
color) 
4. General confirmation messages should be displayed using CSS style other than error 



72 

 

messages style (For Example, using green color) 
5. Tooltips text should be meaningful. 
6. Drop-down fields should have the first entry as blank or text like ‘Select'. 
7. ‘Delete functionality' for any record on a page should ask for a confirmation. 
8. Select/deselect all records option should be provided if page supports record 
add/delete/update functionality 
9. Amount values should be displayed with correct currency symbols. 
10. Default page sorting should be provided. 
11. Reset button functionality should set default values for all fields. 
12. All numeric values should be formatted properly. 
13. Input fields should be checked for the max field value. Input values greater than the 
specified max limit should not be accepted or stored in the database. 
14. Check all input fields for special characters. 
15. Field labels should be standard e.g. field accepting user's first name should be labeled 
properly as ‘First Name'. 
16. Check page sorting functionality after add/edit/delete operations on any record. 
17. Check for timeout functionality. Timeout values should be configurable. Check 
application behavior after the operation timeout. 
18. Check cookies used in an application. 
19. Check if downloadable files are pointing to the correct file paths. 
20. All resource keys should be configurable in config files or database instead of hard 
coding. 
21. Standard conventions should be followed throughout for naming resource keys. 
22. Validate markup for all web pages (validate HTML and CSS for syntax errors) to make 
sure it is compliant with the standards. 
23. Application crash or unavailable pages should be redirected to the error page. 
24. Check the text on all pages for spelling and grammatical errors. 
25. Check numeric input fields with character input values. A proper validation message 
should appear. 
26. Check for negative numbers if allowed for numeric fields. 
27. Check the number of fields with decimal number values. 
28. Check the functionality of buttons available on all pages. 
29. The user should not be able to submit a page twice by pressing the submit button in 
quick succession. 
30. Divide by zero errors should be handled for any calculations. 
31. Input data with the first and last position blank should be handled correctly. 

 

EXERCISE: GUI AND USABILITY TEST SCENARIOS 

1. All fields on a page (For Example, text box, radio options, drop-down lists) should be 
aligned properly. 
2. Numeric values should be justified correctly unless specified otherwise. 
3. Enough space should be provided between field labels, columns, rows, error messages, 
etc. 
4. The scrollbar should be enabled only when necessary. 
5. Font size, style, and color for headline, description text, labels, infield data, and grid info 
should be standard as specified in SRS. 
6. The description text box should be multi-lined. 



73 

 

7. Disabled fields should be greyed out and users should not be able to set focus on these 
fields. 
8. Upon click of an input text field, the mouse arrow pointer should get changed to the 
cursor. 
9. The user should not be able to type in drop-down select lists. 
10. Information filled by users should remain intact when there is an error message on page 
submit. The user should be able to submit the form again by correcting the errors. 
11. Check if proper field labels are used in error messages. 
12. Drop-down field values should be displayed in defined sort order. 
13. Tab and Shift+Tab order should work properly. 
14. Default radio options should be pre-selected on the page load. 
15. Field-specific and page-level help messages should be available. 
16. Check if the correct fields are highlighted in case of errors. 
17. Check if the drop-down list options are readable and not truncated due to field size 
limits. 
18. All buttons on a page should be accessible by keyboard shortcuts and the user should be 
able to perform all operations using a keyboard. 
19. Check all pages for broken images. 
20. Check all pages for broken links. 
21. All pages should have a title. 
22. Confirmation messages should be displayed before performing any update or delete 
operation. 
23. Hourglass should be displayed when the application is busy. 
24. Page text should be left-justified. 
25. The user should be able to select only one radio option and any combination for 
checkboxes. 

EXERCISE: TEST SCENARIOS FOR FILTER CRITERIA 

1. The user should be able to filter results using all parameters on the page. 
2. Refine search functionality should load the search page with all user-selected search 
parameters. 
3. When there are at least one filter criteria required to perform the search operation, make 
sure the proper error message is displayed when the user submits the page without 
selecting any filter criteria. 
4. When at least one filter criteria selection is not compulsory, the user should be able to 
submit the page and the default search criteria should get used to query results. 
5. Proper validation messages should be displayed for all invalid values for filter criteria. 

EXERCISE: TEST SCENARIOS FOR RESULT GRID 

1. Page loading symbol should be displayed when it's taking more than default time to load 
the result page. 
2. Check if all the search parameters are used to fetch data shown on the result grid. 
3. The total number of results should be displayed in the result grid. 
4. Search criteria used for searching should be displayed in the result grid. 
5. Result grid values should be sorted by default column. 
6. Sorted columns should be displayed with a sort icon. 
7. Result grids should include all the specified columns with correct values. 
8. Ascending and descending sorting functionality should work for columns supported by 



74 

 

data sorting. 
9. Result grids should be displayed with proper column and row spacing. 
10. Pagination should be enabled when there are more results than the default result count 
per page. 
11. Check for Next, Previous, First and Last page pagination functionality. 
12. Duplicate records should not be displayed in the result grid. 
13. Check if all the columns are visible and a horizontal scrollbar is enabled if necessary. 
14. Check the data for dynamic columns (columns whose values are calculated dynamically 
based on the other column values). 
15. For result grids showing reports check ‘Totals' row and verify the total for every column. 
16. For result grids showing reports check ‘Totals' row data when pagination is enabled and 
the user gets navigated to the next page. 
17. Check if proper symbols are used for displaying column values e.g. % symbol should be 
displayed for percentage calculation. 
18. Check result grid data to know if the date range is enabled. 

EXERCISE: TEST SCENARIOS FOR A WINDOW 

1. Check if the default window size is correct. 
2. Check if the child window size is correct. 
3. Check if there is any field on the page with default focus (in general, the focus should be 
set on the first input field of the screen). 
4. Check if child windows are getting closed on closing parent/opener window. 
5. If the child window is opened, the user should not be able to use or update any field in 
the background or parent window 
6. Check window minimize, maximize, and close functionality. 
7. Check if the window is re-sizable. 
8. Check scroll bar functionality for parent and child windows. 
9. Check cancel button functionality for the child window. 

EXERCISE: DATABASE TESTING TEST SCENARIOS 

1. Check if correct data is getting saved in the database upon a successful page submit. 
2. Check values for columns that are not accepting null values. 
3. Check for data integrity. Data should be stored in single or multiple tables based on the 
design. 
4. Index names should be given as per the standards e.g. 
IND_<Tablename>_<ColumnName> 
5. Tables should have a primary key column. 
6. Table columns should have description information available (except for audit columns 
like created date, created by, etc.) 
7. For every database add/update operation log should be added. 
8. Required table indexes should be created. 
9. Check if data is committed to the database only when the operation is successfully 
completed. 
10. Data should be rolled back in case of failed transactions. 
11. Database name should be given as per the application type i.e. test, UAT, sandbox, live 
(though this is not a standard it is helpful for database maintenance) 
12. Database logical names should be given according to the database name (again this is 



75 

 

not standard but helpful for DB maintenance). 
13. Stored procedures should not be named with a prefix “sp_” 
14. Check if values for table audit columns (like created date, created by, updated, updated 
by, is deleted, deleted data, deleted by, etc.) are populated properly. 
15. Check if input data is not truncated while saving. Field length shown to the user on the 
page and in database schema should be the same. 
16. Check numeric fields with minimum, maximum, and float values. 
17. Check numeric fields with negative values (for both acceptance and non-acceptance). 
18. Check if the radio button and drop-down list options are saved correctly in the database. 
19. Check if the database fields are designed with the correct data type and data length. 
20. Check if all the table constraints like a Primary key, Foreign key, etc. are implemented 
correctly. 
21. Test stored procedures and triggers with sample input data. 
22. Input field leading and trailing spaces should be truncated before committing data to the 
database. 
23. Null values should not be allowed for the Primary key column. 

EXERCISE: TEST SCENARIOS FOR IMAGE UPLOAD FUNCTIONALITY 

(Also applicable for other file upload functionality) 
1. Check for uploaded image path. 
2. Check image upload and change functionality. 
3. Check image upload functionality with image files of different extensions (For 
Example, JPEG, PNG, BMP, etc.) 
4. Check image upload functionality with images having space or any other allowed special 
character in the file name. 
5. Check duplicate name image upload. 
6. Check image upload with image size greater than the max allowed size. The Proper error 
message should be displayed. 
7. Check image upload functionality with file types other than images (For Example, txt, doc, 
pdf, exe, etc.). A proper error message should be displayed. 
8. Check if images of specified height and width (if defined) are accepted otherwise 
rejected. 
9. The image upload progress bar should appear for large size images. 
10. Check if the cancel button functionality is working in between the upload process. 
11. Check if file selection dialog shows only supported files listed. 
12. Check multiple images upload functionality. 
13. Check image quality after upload. Image quality should not be changed after upload. 
14. Check if the user is able to use/view the uploaded images. 

EXERCISE: TEST SCENARIOS FOR SENDING EMAILS 

(Test cases for composing or validating emails are not included here) 
(Make sure to use dummy email addresses before executing email related tests) 
1. The email template should use standard CSS for all emails. 
2. Email addresses should be validated before sending emails. 
3. Special characters in the email body template should be handled properly. 
4. Language-specific characters (For Example, Russian, Chinese or German language 
characters) should be handled properly in the email body template. 
5. Email subject should not be blank. 



76 

 

6. Placeholder fields used in the email template should be replaced with actual values e.g. 
{Firstname} {Lastname} should be replaced with an individual's first and last name properly 
for all the recipients. 
7. If reports with dynamic values are included in the email body and report data should be 
calculated correctly. 
8. Email sender name should not be blank. 
9. Emails should be checked in different email clients like Outlook, Gmail, Hotmail, Yahoo! 
mail, etc. 
10. Check to send email functionality using TO, CC and BCC fields. 
11. Check plain text emails. 
12. Check HTML format emails. 
13. Check email header and footer for company logo, privacy policy, and other links. 
14. Check emails with attachments. 
15. Check to send email functionality to single, multiple or distribution list recipients. 
16. Check if a reply to the email address is correct. 
17. Check to send the high volume of emails. 

EXERCISE: TEST SCENARIOS FOR EXCEL EXPORT FUNCTIONALITY 

1. The file should get exported in the proper file extension. 
2. The file name for the exported Excel file should be as per the standards, For Example, if 
the file name is using the timestamp, it should get replaced properly with an actual 
timestamp at the time of exporting the file. 
3. Check for date format if exported Excel file contains the date columns. 
4. Check number formatting for numeric or currency values. Formatting should be the same 
as shown on the page. 
5. The exported file should have columns with proper column names. 
6. Default page sorting should be carried in the exported file as well. 
7. Excel file data should be formatted properly with header and footer text, date, page 
numbers, etc. values for all pages. 
8. Check if the data displayed on a page and exported Excel file is the same. 
9. Check export functionality when pagination is enabled. 
10. Check if the export button is showing proper icon according to the exported file 
type, For Example, Excel file icon for xls files 
11. Check export functionality for files with very large size. 
12. Check export functionality for pages containing special characters. Check if these special 
characters are exported properly in the Excel file. 

EXERCISE: PERFORMANCE TESTING TEST SCENARIOS 

1. Check if the page load time is within the acceptable range. 
2. Check the page load on slow connections. 
3. Check the response time for any action under a light, normal, moderate, and heavy load 
conditions. 
4. Check the performance of database stored procedures and triggers. 
5. Check the database query execution time. 
6. Check for load testing of the application. 
7. Check for the Stress testing of the application. 
8. Check CPU and memory usage under peak load conditions. 



77 

 

EXERCISE: SECURITY TESTING TEST SCENARIOS 

1. Check for SQL injection attacks. 
2. Secure pages should use the HTTPS protocol. 
3. Page crash should not reveal application or server info. The error page should be 
displayed for this. 
4. Escape special characters in the input. 
5. Error messages should not reveal any sensitive information. 
6. All credentials should be transferred over an encrypted channel. 
7. Test password security and password policy enforcement. 
8. Check application logout functionality. 
9. Check for Brute Force Attacks. 
10. Cookie information should be stored in encrypted format only. 
11. Check session cookie duration and session termination after timeout or logout. 
11. Session tokens should be transmitted over a secured channel. 
13. The password should not be stored in cookies. 
14. Test for Denial of Service attacks. 
15. Test for memory leakage. 
16. Test unauthorized application access by manipulating variable values in the browser 
address bar. 
17. Test file extension handing so that exe files are not uploaded and executed on the 
server. 
18. Sensitive fields like passwords and credit card information should not have to 
autocomplete enabled. 
19. File upload functionality should use file type restrictions and also anti-virus for scanning 
uploaded files. 
20. Check if directory listing is prohibited. 
21. Passwords and other sensitive fields should be masked while typing. 
22. Check if forgot password functionality is secured with features like temporary password 
expiry after specified hours and security question is asked before changing or requesting a 
new password. 
23. Verify CAPTCHA functionality. 
24. Check if important events are logged in log files. 
25. Check if access privileges are implemented correctly. 

 

11. SOFTWARE TEST ESTIMATION TECHNIQUES: STEP BY STEP GUIDE 

For the success of any project test estimation and proper execution is equally important as 
the development cycle. Sticking to the estimation is very important to build a good 
reputation with the client. Experience plays a major role in estimating “Software Testing 
Efforts”. Working on varied projects helps to prepare an accurate estimation of the testing 
cycle. Obviously one cannot just blindly put some number of days for any testing task. Test 
estimation should be realistic and accurate. 

BRIEF DESCRIPTION OF THE TEST ESTIMATION PROCESS 



78 

 

“Estimation is the process of finding an estimate, or approximation, which is a value that is 
usable for some purpose even if input data may be incomplete, uncertain, or unstable.”  

We all come across different tasks and duties and deadlines throughout our lives as 
professionals, now there are two approaches to find a solution to a problem. A first 
approach is a reactive approach whereby we try to find a solution to the problem at hand 
only after it arrives. In the second approach which can be called a Proactive Approach 
whereby we first prepare ourselves well before the problem arrives with our past 
experiences and then with our past experience, we try to find a solution to the challenge 
when it arrives. Estimation can thus be considered as a technique that is applied when we 
take a proactive approach to the problem. Thus Estimation can be used to predict how 
much effort with respect to time and cost would be required to complete a defined task. 
Once the testing team is able to make an estimate of the problem at hand then it is easier 
for them to come up with a solution that would be optimum to the problem at hand. The 
practice of estimation can be defined then more formally as an approximate computation of 
the probable cost of a piece of work. 

THE BASIC PREREQUISITES OF THE TEST ESTIMATION PROCESS 

#1) Insights gathered from working with past experience: It is always a good practice 
to spend some time, recalling past projects which posed challenges similar to the current 
endeavor at hand. 

#2) The available documents or artifacts: The test management repository tools 
come in handy in these types of scenarios as they store the requirement and clarification 
documents. These documents can be referred by the testing team to clearly define the 
scope of the project. 

#3) Assumptions about the type of work: Past working experience helps in making 
assumptions about the project. This is where hiring experienced professionals matters most. 

The testing managers can pick up the brains of these people for delivering the desired 
results. 

#4) Calculation of potential risks and threats: The testing team also needs to visualize 
the potential risks and threats and pitfalls which lie may lie for the team in the future. 

#5) Determining whether the documents have been baselined: The testing team also 
needs to determine if the requirements have been baselined or not. If the documents are 
not baselined then it is important to determine the frequency of the changes. 

#6) All responsibilities and dependencies should be clear: The organization should 
clearly define the roles and responsibilities for all the persons who would be performing the 
estimation process. 



79 

 

#7) Documentation and tracking of the estimation records: All the relevant 
information to the estimation process should be documented. 

#8) Activities which are required to be performed during the test estimation process 

• Organize the team that would perform estimations 
• Decompose the project into project phases and subsequent constituent activities 
• Compute the estimation based upon previous projects and professional experience 
• Prioritize the possible threats and come up with the approaches to mitigate those 

risks 
• Review and document the relevant part of the work 
• Submit the work to the relevant stakeholders 
• Most Prominent Test Estimation Techniques 
• Some of the most important techniques for test estimation are: 
• Test point estimation 
• Work-phase based estimation 
• Use case point estimation 

 

HOW AND WHERE WE USE THESE TECHNIQUES: 

#1) Test Point estimation is a simple and easily understandable estimation technique 
that is widely used across the software testing spectrum. Iterative phases and simplicity are 
the most important features of this particular technique. 

#2) Work-phase based estimation is the estimation technique which is used whereby 
a guess estimate is made on a particular phase (normally the shortest and simplest of the 
phases) and then the testing team gradually adds on other phases into the initial estimation 

and finally comes up with an appropriate estimation. 

#3) Use-Case Point estimation technique is 
the estimation on the use cases where the 
unadjusted actor weights and unadjusted use case 
weights are used to determine the software testing 
estimation. 

 

DETAILS OF THE TEST POINT ESTIMATION 
TECHNIQUE 

The test point estimation technique is done by 
following the listed steps:  

 



80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unprocessed Test Points are multiplied by CWF to obtain the testing size in Test Point’s Size.  

The Productivity Factor indicates the amount of time for a test engineer to complete the 
testing of one Test Point. 

Testing Effort in Person Hours is computed by multiplying the Test Point size by the 
Productivity factor. 

For the computation of the test point estimation technique, we consider the following 
variables. 

Test requirement complexity 

 

Interface with other requirements 

 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/10/Interface-with-other-requirements.jpg


81 

 

Total number of verification points 

 

Baseline test data 

 

 

We then need to consider weight vectors for each of the data variables and organize them 
in the following manner. 

 

 

Adjustment factor = Average of (product of complexity weight and factor weight) / 30 

Adjustment Test Point for Test case design = Total Test Point X (1 + Adjustment factor for 
Test Case design) 

Adjusted Test Point for Test case execution = Total Test Point X (1 + Adjustment factor for 
Test Case execution) 

Total Test Point (normalized) X (1 + Adjustment factor for Test Case design/execution) = 
Adjusted Test Point for Test Case design/execution 

Total effort in Person Hours (PH) = Number of Normalized Test points / Productivity (in 
Normalized Test points per Person Hours) 

 

TEST ESTIMATION EXERCISE: 

Let us try to apply the above formulation into a practical use. 

Suppose we end up with a test requirement whereby we have 5 test scenarios to test. 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/10/Total-number-of-verification-points.jpg
https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/10/Baseline-test-data.jpg
https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/10/weight-vectors-for-the-data-variables.jpg


82 

 

Now say Test scenario 1 has got 5 test expected results, test scenario 2 6 test expected 
results, test scenario 3 only 2 test expected results, test scenario 4 9 test expected results, 
test scenario 5 also 9 test expected results, respectively. 

So we classify the test scenarios in three classes i.e. complex, simple and moderate based 
upon the total number of expected results present in these three classes. 

Complex classes will have more than 7 expected results whereas the simple ones will consist 
of less than 5 expected results and the moderate scenarios would consist of between 4 to 7 
expected results. 

We thus classify test scenario 1 and test scenario 2 as moderate scenarios, scenario 5 and 
scenario 6 as complex ones and test scenario 3 as simple. 

We now will apply test points to all these scenarios. We apply 5 test points for complex 
classes, 3 for moderate ones and 2 for the simple scenarios. 

We multiply the assumed test points with the total number of expected results in all these 
test scenarios. So we end up with the following approximations. 

Scenario 1: 3 test points * 5 test expected results = Adjusted test points = 25 
Scenario 2: 3 test points * 6 test expected results = Adjusted test points = 30 
Scenario 3: 2 test points * 2 test expected results = Adjusted test points = 4 
Scenario 4: 5 test points * 9 test expected results = Adjusted test points = 45 
Scenario 5: 5 test points * 9 test expected results = Adjusted test points = 45 

So considering that we need to apply to say 5 Person Hours for each adjusted test point we 
end up getting the following approximate result. 

Test Scenario 1: 25 adjusted test points * 5 Person Hours = 125 Person Hours 
Test Scenario 2: 30 adjusted test points * 5 Person Hours = 150 Person Hours 
Test Scenario 3: 4 adjusted test points * 5 Person Hours= 20 Person Hours 
Test Scenario 4: 45 adjusted test points * 5 Person Hours = 225 Person Hours 
Test Scenario 5: 45 adjusted test points * 5 Person Hours = 225 Person Hours 

So total approximated person-hours is: 745 
Person Hours 

 

USE CASE POINT ESTIMATION METHOD 

Use-Case Point Method is based on the use 
cases where we calculate the overall test 
estimation effort based on the use cases or 
the requirements. 



83 

 

Here is the detailed process of the Use case point estimation method: 

 

 

 

 

 

EXERCISE:   

Say in a particular requirement we have 5 use 
cases, use case 1, use case 2,…, use case 5 
respectively. Now let us consider that use 
case 1 consists of 6 actors, use case 2 consists 

of 15 actors, use cases 3, 4 and 5, 3, 4 and 5 actors respectively. 

We consider any use case which involves the total number of actors as less than 5 as 
negative, any use case with the total number of actors is equal to or more than 5 and less 
than or equal to 10 as positive and any use case with more than 10 actors as exceptional. 

We decide to assign 2 points to the exceptional use cases, 1 to the positive ones and -1 for 
the negative ones. 

Thus we categorize the Use cases 1 and 5 as positive, use case 2 as exceptional and use case 
3, 4 as negative respectively based on our above-stated assumptions. 

So the Unprocessed actor weights = Use case 1 = (total number of actors) 5 * 1(the assigned 
point) = 5. Similarly 

Use case 2 = 15 * 2 = 30 . 

Repeating the process for rest of the use cases we receive the Unprocessed actor weights = 
33 

Unprocessed use case weight = total no. of use cases = 5 

Unprocessed use case point = Unadjusted actor weights + Unadjusted use case weight = 33 + 
5 = 38 

Processed use case point = 38 * [0.65+ (0.01 * 50] = 26.7 or 28 Person Hours approximately 

 

WORK-PHASE BREAKDOWN TECHNIQUE 

The work phase breakdown technique can be described in the following steps. 



84 

 

• Break down the overall work into phases. 
• Start with the simplest phase and assign an approximate estimation value to it. 
• Then proceed with identifying the next possible phase which could be commenced 

once this phase completes. 
• Derive a possible set of approximation values that could be applied to this phase and 

choose the maximum value amongst all the derived approximation values. 
• Sum up the approximated estimation value by adding the current phase effort 

estimation value to the already existing value. 
• Continue steps 3 to 5 until all the phases identified in the first step are exhausted. 
• Accept the final approximate estimate value as the ultimate. 

EXERCISE:  

Suppose in a requirement there are 5 required phases. So in the initial phase 1 we assume 
that total efforts needed are 35 person-hours and then we commence the next phase 2 for 
which we have 4 comparative assumptions of 35, 45, 55 and 65 respectively. 

So we consider the 65 person-hour which is the maximum value here. In phase 3,4 ,5 we 
come up with estimates (12,33,43 ,54) , (15, 10, 7 , 8) and (2 , 16 , 5 ,13) respectively. By 
applying the said principle we end up with 185 Person Hours respectively. 

 

FACTORS AFFECTING SOFTWARE TEST ESTIMATION, AND GENERAL TIPS TO 
ESTIMATE ACCURATELY: 

#1) Think of Some Buffer Time: The estimation should include some buffer. But do 
not add a buffer, which is not realistic. Having a buffer in the estimation enables to cope 
with any delays that may occur. Having a buffer also helps to ensure maximum test 
coverage. 

#2) Consider the Bug Cycle: The test estimation also includes the bug cycle.  The 
actual test cycle may take more days than estimated. To avoid this, we should consider the 
fact that the test cycle depends on the stability of the build. If the build is not stable, then 
developers may need more time to fix and obviously, the testing cycle gets extended 
automatically. 

#3) Availability of All the Resources for Estimated Period: The test estimation should 
consider all the leaves planned by the team members (typically long leaves) in the next few 
weeks or next few months. This will ensure that the estimations are realistic. 

The estimation should consider some fixed number of resources for a test cycle. If the 
number of resources reduces then the estimation should be re-visited and updated 
accordingly. 



85 

 

#4) Can We Do Parallel Testing?: Do you have some previous versions of the same 
product so that you can compare the output? If yes, then this can make your testing task a 
bit easier. You should think about the estimation based on your product version. 

#5) Estimations Can Go Wrong: So re-visit the estimations frequently in initial stages 
before you commit it. In the early stages, we should frequently re-visit the test estimations 
and make a modification if needed. We should not extend the estimation once we freeze it 
unless there are major changes in requirements. 

#6) Think of Your Past Experience to Make Judgments!: Experiences from past 
projects play a vital role while preparing time estimates. We can try to avoid all the 
difficulties or issues that were faced in past projects. We can analyze how the previous 
estimates were and how much they helped to deliver the product on time. 

#7) Consider the Scope of Project: Know what is the end objective of the project and 
list of all final deliverables. Factors to be considered for small and large projects differ a lot. 

A Large project typically includes setting up a testbed, generating test data, test scripts, etc. 
Hence the estimations should be based on all these factors. Whereas in small projects, 
typically the test cycle includes test cases writing, execution and regression. 

#8) Are You Going to Perform Load Testing?: If you need to put considerable time on 
performance testing then estimate accordingly. Estimations for projects, which involve load 
testing, should be considered differently. 

#9) Do You Know Your Team?: If you know the strengths and weaknesses of 
individuals working in your team then you can estimate testing tasks more precisely. While 
estimating one should consider the fact that all resources may not yield the same 
productivity level. Some people can execute faster compared to others. Though this is not a 
major factor, it adds up to the total delay in deliverables. 

 

12. HOW TO WRITE A TEST PLAN 

A TEST PLAN is a document describing software testing scope and activities. It is the basis for 
formally testing any software/product in a project. 

Definition: A document describing the scope, approach, resources and schedule of intended 
test activities. It identifies amongst others test items, the features to be tested, the testing 
tasks, who will do each task, degree of tester independence, the test environment, the test 
design techniques and entry and exit criteria to be used, and the rationale for their 
choice,and any risks requiring contingency planning. It is a record of the test planning 
process. There can be a Master test plan (A test plan that typically addresses multiple test 
levels) and a Phase test plan (A test plan that typically addresses one test phase). 



86 

 

TEST PLAN TYPES 

• Master Test Plan: A single high-level test plan for a project/product that unifies all 
other test plans. 

• Testing Level Specific Test Plans: Plans for each level of testing. 
• Unit Test Plan 
• Integration Test Plan 
• System Test Plan 
• Acceptance Test Plan 
• Testing Type Specific Test Plans: Plans for major types of testing like Performance 

Test Plan and Security Test Plan. 

 

TEST PLAN TEMPLATE 

The format and content of a software test plan vary depending on the processes, standards, 
and test management tools being implemented. Nevertheless, the following format, which 
is based on IEEE standard for software test documentation, provides a summary of what a 
test plan can/should contain. 

Test Plan Identifier: Provide a unique identifier for the document. (Adhere to the 
Configuration Management System if you have one.) 

Introduction: 

• Provide an overview of the test plan. 
• Specify the goals/objectives. 
• Specify any constraints. 

References: 

• List the related documents, with links to them if available, including the following: 
• Project Plan 
• Configuration Management Plan 

Test Items: 

• List the test items (software/products) and their versions. 
• Features to be Tested: 
• List the features of the software/product to be tested. 
• Provide references to the Requirements and/or Design specifications of the features 

to be tested 

Features Not to Be Tested: 

• List the features of the software/product which will not be tested. 



87 

 

• Specify the reasons these features won’t be tested. 

Approach: 

• Mention the overall approach to testing. 
• Specify the testing levels [if it’s a Master Test Plan], the testing types, and the testing 

methods [Manual/Automated; White Box/Black Box/Gray Box] 
• Item Pass/Fail Criteria: 
• Specify the criteria that will be used to determine whether each test item 

(software/product) has passed or failed testing. 
• Suspension Criteria and Resumption Requirements: 
• Specify criteria to be used to suspend the testing activity. 
• Specify testing activities which must be redone when testing is resumed. 

Test Deliverables: 

List test deliverables, and links to them if available, including the following: 

• Test Plan (this document itself) 
• Test Cases 
• Test Scripts 
• Defect/Enhancement Logs 
• Test Reports 

Test Environment: 

• Specify the properties of test environment: hardware, software, network etc. 
• List any testing or related tools. 

Estimate: Provide a summary of test estimates (cost or effort) and/or provide a link to 
the detailed estimation. 

Schedule: Provide a summary of the schedule, specifying key test milestones, and/or 
provide a link to the detailed schedule. 

Staffing and Training Needs: 

• Specify staffing needs by role and required skills. 
• Identify training that is necessary to provide those skills, if not already acquired. 
• Responsibilities: 
• List the responsibilities of each team/role/individual. 

Risks: 

• List the risks that have been identified. 
• Specify the mitigation plan and the contingency plan for each risk. 
• Assumptions and Dependencies: 



88 

 

• List the assumptions that have been made during the preparation of this plan. 
• List the dependencies. 

Approvals: 

• Specify the names and roles of all persons who must approve the plan. 
• Provide space for signatures and dates. (If the document is to be printed.) 

 

TEST PLAN GUIDELINES 

• Make the plan concise. Avoid redundancy and superfluousness. If you think you do 
not need a section that has been mentioned in the template above, go ahead and 
delete that section in your test plan. 

• Be specific. For example, when you specify an operating system as a property of a 
test environment, mention the OS Edition/Version as well, not just the OS Name. 

• Make use of lists and tables wherever possible. Avoid lengthy paragraphs. 
• Have the test plan reviewed a number of times prior to baselining it or sending it for 

approval. The quality of your test plan speaks volumes about the quality of the 
testing you or your team is going to perform. 

• Update the plan as and when necessary. An out-dated and unused document stinks 
and is worse than not having the document in the first place. 

 

EXAMPLE TEST PLAN: 

 

XYZ bank 

 

Detailed Test Plan - UIS 

XYZ System  

  

This copy printed on:     February 11, 2021 

Document Last Modification date:   May 19 2016 

Version:     0.1 

Status:      <Draft > 

Revision:     1 



89 

 

Document Owner:     XYZ BANK PCL.  

Document Author:     XYXY 

Document Reviewer:    <Reviewer/Manager> 

Document History 

This is a snapshot of an on-line document. Paper copies are valid only on the day they are 
printed. Refer to the author if you are in any doubt about the currency of this document. 

This is document template format when you copy to use for practice please remove yellow 
highlight and replace with your own information. 

Revision History 

Version 
Number 

Revision Date Summary of Changes Changed by 

V 0.1 

 

08 Nov 2015 Initial Version  

Reviewer 

Name Position/ Department Version Review  Date 

(Name-Surname) (Position / 
Department) 

9.9 DD/MM/YYYY 

    

    

Approvals 

Name Position/ Department Version Approve Date 

Name-Surname) (Position / 
Department) 

 

9.9 DD/MM/YYYY 

    

Distribution 



90 

 

This document is available to: 

 

 Entire Project 

 Restricted to the following team members 

Name Title 

(name) (title) 

  

 

 

List of Table 

Table 3: Reference 92 

Table 4: Definitions and Acronyms 93 

Table 5: Functional 93 

Table 7: Non Functional 94 

Table 6: Out of Scope Content 95 

Table 9:  Example test cycle 97 

Table 10: Entry and Exit criteria of testing level 98 

 

Introduction 

Background 

The Detailed Test Plan (DTP) contains a detailed and executable strategy for conducting. It 
defines the detailed testing objective specific to a particular system, the testing approach, 
test environment, test conditions, and the test plan. 

 

Target is to concentrate on internal and external fraud detection. The primary 

stage will concentrate on the detection of internal fraud at the retail and private 

branch operations and at the activity of staff accounts that defined from XYZ bank. 



91 

 

Testing  Objectives 

The objectives of testing are as follows: 

• Implement a world-class fraud detection system that will be scalable and 

expandable and will assist the Bank compact and significantly reduce both 

internal and external fraud risk. 

• Develop a fraud detection capability that allows the management of multiple 

fraud risk types through a common platform. 

• Provide a robust fraud detection platform that can be used across multiple 

enterprises across the XYZ bank. 

 

Document Audience 

 

Role Name Email/ Telephone Organizatio
n 

Product Owner    

Project 
Manager 

   

PMO    

QA    

Functional 
Team Lead 

   

BA 

 

   

Business Unit 

 

   

Development    



92 

 

Role Name Email/ Telephone Organizatio
n 

Team Lead 

 

Infrastructure 
Team Lead  

   

Infrastructure 
Team 

   

Test  Lead    

Test Team 

 

   

Deployment  

Team Lead 

   

Deployment 
Team  

   

    

    

* Remove the role which may not include in your project charter.  * If document change 
version and the stakeholder name is changed, should modify the name as well.. 

References 

This document is based on and refers to the following documents: 

Table 1: Reference 

Document Name Author Version Update date 

1. <Master Test plan> <Name of last update 
person> 

<V.9.9> <Latest update 
date> 

2. Bank Specification  V.0.1 February 11, 



93 

 

2021 

3. <RTM : Requirement 
Traceability Matrix> 

<Name of last update 
person> 

<V.9.9> <Latest update 
date> 

Definition and Acronyms 

This section provides information regarding the Acronyms and terminology specifically used 
in this document.   

Table 2: Definitions and Acronyms 

Acronym  Definition 

CD Cash Deposit 

CW Cash Withdrawal 

  

  

  

  

 

Testable Items 

In  Scope 

 This test activity focuses on the following: 

 

1. Perform investigations based on business rule. 

2. 

3.  

 

Functional   Scope 

To list all functional area and description that will be in scope of testing. 



94 

 

 

Table 3: Functional 

Functional Area  Functional Sub Area  Description  

BR001 BR001_1 Detailed description   

BR002 BR002_1 Detailed description 

BR003 BR003_1 Detailed description 

   

   

   

   

   

   

   

   

   

   

   

 

Non Functional Scope  

To list all non functional area and description that will be in scope of testing.   

 

 

Table 4: Non Functional 



95 

 

Non Functional 
Requirement 

Description  

NFR-001 Detailed description 

NFR-002 Detailed description 

Out of Scope 

[It is important to clearly define (at a high level) all of the testable components of the 
solution that will not be tested. These should include infrastructure, functional subsets, non-
functional requirements, and software modules. Specific testing activities (such as load and 
performance testing, penetration tests, etc) should also be listed. Brief reasoning behind 
why the items have been de-scoped should be included]. 

Table 5: Out of Scope Content  

Item Description 

1 <High level describe the item of out scope> 

2 <High level describe the item of out scope> 

3 <High level describe the item of out scope> 

  

  

Testing Exclusions 

[A test exclusion is an element of the SUT that has not been de-scoped but which will not be 
tested by this plan due to (usually) a logistical issue. These may include activities such as 
report/letters distributed by fax/email/sms and may reference the test phase/level that will 
be responsible for conducting this testing]. 

Detailed Test Approach 

All testing conducted by, or for, the KT Program complies with the Master Test Strategy. This 
DTP has been created to define the test activities documented in the   Master Test Plan 

[Insert Release Name and Test Activity] will be tested using the following approach: 

[List (in detail) the key elements that make up the strategy you will use to deliver the 
required test objectives. Wherever possible link specific activities to the relevant test 
objective. Change/edit the accompanying descriptions to suit the individual release]. 



96 

 

Naming Conventions for Function Groups and Functions 

[Use the Configuration Management naming conventions to define the structure used for 
the test project nomenclature. If HP Quality Center is to be used ensure the nomenclature 
rules also align with the requirements defined for it. The Test case ID should be agreed with 
the naming convention. 

 

Rename this section as required: 

… for Function Groups and Functions 

… for Scenarios and Usecases 

etc] 

Test Case Design 

Extract testable requirements from the requirement specifications and design test 
conditions which accurately reflect the functional enhancements and changes. 

[Add design elements/requirements specific to this test activity]. 

Identify test approach about test case design before identify the detail of test case test 
script in next step. To declare what is the concern item of each module or functional/non 
functional area and what the test case design is for detect the defect. The test technique 
should be state for this section. XYZ bank test coverage matrix should be mention and state 
that how to ensure the project will follow this guideline.  

Test design should mention about the group of regression impact. If the most of the defect 
occur on the area which test case design should be re-test. And the regression test approach 
should be mention as well. 

Test Scheduling 

Identify test schedule for <Test level> base on <project master plan version>.  The high level 
plan for testing preparation, test execution, defect fixing, and data test preparation period 
are identified as below. <The format of schedule can demonstrate in structure of table of 
calendar or schedule in Microsoft project>  

 

[For complex test schedules reference any external tools or systems you will be 
using/developing to support the scheduling. Include specific flags or nomenclature that will 
be used to identify/classify test scripts and test cases that have to be executed at a specific 
point in the schedule. (pre or post batch, day one, after script xyz has executed, etc]  

 Figure: Test schedule 



97 

 

 

 

 

 

 

 

Table 6:  Example test cycle 

Batch Run # Function to be Executed Cycle Date 

Batch Run 1  

(Daily) 

Account Enquiries 

New Account Set-up 

Transaction Processing 

TBD *(to be 
defined) 

Batch Run 2 

 (Cycle) 

Interest Posting 

Minimum Payment 

12/06/09 

Batch Run 3 

(Daily) 

Interest Accrual TBD *(to be 
defined) 

Data Build 

Identify plan to get data for each testing area. Mention the approach and activity plan for 
getting test data properly. The process step of prepare data mention here.   

 [Document the strategies that will be used to generate or extract appropriate data for the 
test effort]. 

Results/Sign-Off 

Suspension/Resumption Criteria 



98 

 

Testing will halt for a particular project item (or function) when: 

A critical problem is identified and where the potential code fix will require substantial re-
testing of that function 

It is identified that the business or technical specifications require major modifications due 
to escalated test issues and those modifications would require additional test analysis and 
or modification to the Detailed Test Plan. 

The test regions or test environment are not available (for any reason). 

The test regions or test environment suffer performance problems below 50% of their 
normal operating capacity, such that a region fix will require substantial re-testing of that 
function. 

[Document all other suspension/resumption. Make sure the resumption criteria are 
unambiguously defined]. 

 

<Select from below table only testing level related on this DTP> consider the entry and Exit 
criteria reasonable on your project> 

Pass/Fail Criteria 

The specific pass/fail criteria for the testing at both the test cycle and release level are 
identifying in table below. This can include percentage of severity 3 and 4 defects that will 
be allowed to migrate between test/production environment and any specific business 
defined criteria. Identify information in this part , select only current testing level involve in 
this DTP. 

[Document any specific pass/fail criteria for the testing at both the test cycle and the overall 
test activities. This can include percentage of severity 3 and 4 defects that will be allowed to 
migrate between test/production regions and any specific business defined criteria]. 

Table 7: Entry and Exit criteria of testing level 

Testing Level Entry criteria Guideline Exit Criteria Guideline 

UIS testing Test environment available with 
latest software build 

Updated requirements 
documents (including change 
requests) 

Component designs 

U/I/S testing objectives met 

All outstanding errors 
documented and assigned a severity 
level agreed with the Vendor 
manager 

All severity critical and high errors 
corrected or with agreed short-term 



99 

 

Testing Level Entry criteria Guideline Exit Criteria Guideline 

signed-off 

Interface designs (e.g. 
message formats/API 
protocols) agreed with 
Architecture team and with dev 
teams 

Environment configuration  
data has been defined and set-up 

workarounds 

Full defect logs from final cycle of 
testing available for review 

Sample test plans/scripts available 
for review 

Test summary report distributed 

Software release packaged and 
under source control 

SIT testing System, Pre-SIT test exit criteria 
met  

Business requirements and 
specification documents signed-
off 

Test environment available with 
latest software build deployed 

Environment configuration  
data has been defined and set-up 

Consolidated release note 
available 

SIT test preparation complete 

SIT risk based schedule agreed by 
all parties 

SIT testing objectives met 

All test cases have been executed at 
least once (100% execution 
coverage) 

All outstanding errors 
documented and assigned a severity 
level agreed with the release 
management and vendor 
management. 

All severity critical and high errors 
corrected or with agreed short-term 
workarounds 

SIT testing analysis complete 

Test summary report distributed and 
approved 

UAT testing SIT exit criteria met  

Business requirements signed-off 

Business process maps complete 
and signed-off 

Training material available 

Test environment available with 
latest software build deployed 

UAT testing objectives met 

All test cases have been executed at 
least once (100% execution 
coverage) 

All outstanding errors 
documented and assigned a severity 
level agreed with management team 

All severity critical and high errors 



100 

 

Testing Level Entry criteria Guideline Exit Criteria Guideline 

Environment configuration  
data has been defined and set-up 

corrected or have documented 
workarounds formally agreed with 
business 

Test summary report distributed and 
approved 

Formal UAT Sign-off  from K-Bank 
received 

   

   

 

 

 

Test Conditions 

Business Event 1- BR001 

Testing will demonstrate the following:  

 

Business Event 2 – BR002 

Testing will demonstrate the following: 

 

Business Event 14 – BR0014 

Testing will demonstrate the following: 

 

There is any financial transaction from dormant account. The dormant account means the 
account does not have any movement from customer action after end of the first due for 
365 days. This excludes all batch jobs i.e. interest posting.  

 

Product Start Date Due Date Open A/C / Sub A/C  



101 

 

3 Month  1/1/2013 31/3/2013 90 (1) 

3 Month  1/4/2013 30/6/2013 90 (2) 

3 Month  1/7/2013 30/9/2013 90 (3) 

3 Month  1/10/2013 31/12/2013 90 (4) 

3 Month  1/1/2014 31/3/2014 90 (5) 

3 Month  1/4/2014 30/6/2014 90 (6) 

 

The first due of 3-Month fixed account (1), 31/3/2013 + 365 days = 31/3/2014 

If there is no customer transaction within 31/3/2014, this 3-Month fixed account is called 
dormant account. 

 

Application Name: S1-ET, CT-Win 

 

Test Environments 

List and/or graphically show the proposed testing environment/s. For small testing projects 
complete all of the listed sections. Larger projects may require a separate Test Environment 
Plan to be produced. If Master test plan already specify may refer to MTP plan instead. 

Client Side Infrastructure 

Provide detailed list/s of required hardware and software at Client side to support testing 
activity of each test level and test environment. May use tabular format for explain the 
content. 

Host/Server Side Infrastructure 

Provide detailed list/s of required hardware and software at Host or Server to support 
testing activity of each test level and test environment. May use tabular format for explain 
the content. 

Middleware 

Provide detailed list/s of required Middleware to support testing activity of each test level 
and test environment. Eg. Test engine or test stub required for interface test. 



102 

 

Test Data preparation 

Define the data subset/s that needs to be pre-loaded into the test environments. This 
content in   is mention about infrastructure preparation view, it does not about the data 
condition or concept that mention in section 3.2 Data test. 

[Provide detailed data requirements. Where specific data is required to establish a data 
condition or execute a test script provide either a list of these data requirements or 
reference the location of this information. Include the processes that will be used to deliver 
the data to the test region. (production extract by operations staff, build by automated 
scripts, generated by the development team/vendor etc)]. 

 

Test Schedule 

[Provide a schedule showing how testing will be divided for execution. Use the following as 
an indicative sample. If a separate schedule is used provide an appropriate docref: and link 
and reference the rules governing its management]. 

 

Batch Run # Function to be Executed Cycle Date Req 

Batch Run 1  

(Daily) 

Account Enquiries 

New Account Set-up 

Transaction Processing 

NIL 

Batch Run 2 

 (Cycle) 

Interest Posting 

Minimum Payment 

12/06/09 

Batch Run 3 

(Daily) 

Interest Accrual NIL 

 

 

Appendix A - System Schematic/s 

Clearly document the System Schematic used for test on this level.  

 

 



103 

 

13. ADITIONAL EXERSIZES 

 

Foundation Level Exam 1 – Test your knowledge! (Answers are at and of test) 

1    We split testing into distinct stages primarily because: 
a)    Each test stage has a different purpose. 
b)    It is easier to manage testing in stages. 
c)    We can run different tests in different environments. 
d)    The more stages we have, the better the testing. 

2    Which of the following is likely to benefit most from the use of test tools providing test 
capture and replay facilities? 
a)    Regression testing 
b)    Integration testing 
c)    System testing 
d)    User acceptance testing 
 
3   Which of the following requirements is testable? 
a)    The system shall be user friendly. 
b)    The safety-critical parts of the system shall contain 0 faults. 
c)    The response time shall be less than one second for the specified design load. 
d)    The system shall be built to be portable. 
 
4   Analise the following highly simplified procedure: 
Ask: “What type of ticket do you require, single or return?” 
IF the customer wants ‘return’ 
Ask: “What rate, Standard or Cheap-day?” 
IF the customer replies ‘Cheap-day’ 
Say: “That will be £11:20” 
ELSE 
Say: “That will be £19:50” 
ENDIF 
ELSE 
Say: “That will be £9:75” 
ENDIF 

Now decide the minimum number of tests that are needed to ensure that all 
the questions have been asked, all combinations have occurred and all 
replies given. 
a)    3 
b)    4 
c)    5 
d)    6 

5    Error guessing: 
a)    supplements formal test design techniques. 
b)    can only be used in component, integration and system testing. 



104 

 

c)    is only performed in user acceptance testing. 
d)    is not repeatable and should not be used. 
 
6    Which of the following is NOT true of test coverage criteria? 
a)    Test coverage criteria can be measured in terms of items exercised by a test suite. 
b)    A measure of test coverage criteria is the percentage of user requirements covered. 
c)    A measure of test coverage criteria is the percentage of faults found. 
d)    Test coverage criteria are often used when specifying test completion criteria. 
 
7    In prioritizing what to test, the most important objective is to: 
a)    find as many faults as possible. 
b)    test high risk areas. 
c)    obtain good test coverage. 
d)    test whatever is easiest to test. 
8    Which one of the following statements about system testing is NOT true? 
a)    System tests are often performed by independent teams. 
b)    Functional testing is used more than structural testing. 
c)    Faults found during system tests can be very expensive to fix. 
d)    End-users should be involved in system tests. 
 
9    Which of the following is false? 
a)    Incidents should always be fixed. 
b)    An incident occurs when expected and actual results differ. 
c)    Incidents can be analyzed to assist in test process improvement. 
d)    An incident can be raised against documentation. 
 
10    Enough testing has been performed when: 
a)    time runs out. 
b)    the required level of confidence has been achieved. 
c)    no more faults are found. 
d)    the users won’t find any serious faults. 
 
11   Which of the following is NOT true of incidents? 
a)    Incident resolution is the responsibility of the author of the software under test. 
b)    Incidents may be raised against user requirements. 
c)    Incidents require investigation and/or correction. 
d)    Incidents are raised when expected and actual results differ. 
 
12    How would you estimate the amount of re-testing likely to be required? 
a)    Metrics from previous similar projects 
b)    Discussions with the development team 
c)    Time allocated for regression testing 
d)    a & b 
 
13    Which of the following is true of the V-model? 
a)    It states that modules are tested against user requirements. 
b)    It only models the testing phase. 
c)    It specifies the test techniques to be used. 
d)    It includes the verification of designs. 



105 

 

 
14    Which of the following characterizes the cost of faults? 
a)    They are cheapest to find in the early development phases and the most expensive to 
fix in the latest test phases. 
b)    They are easiest to find during system testing but the most expensive to fix then. 
c)    Faults are cheapest to find in the early development phases but the most expensive to 
fix then. 
d)    Although faults are most expensive to find during early development phases, they are 
cheapest to fix then. 
 
15    Which of the following should NOT normally be an objective for a test? 
a)    To find faults in the software. 
b)    To assess whether the software is ready for release. 
c)    To demonstrate that the software doesn’t work. 
d)    To prove that the software is correct. 
 
16    Which of the following is a form of functional testing? 
a)    Boundary value analysis 
b)    Usability testing 
c)    Performance testing 
d)    Security testing 
 
17    Which of the following would NOT normally form part of a test plan? 
a)    Features to be tested 
b)    Incident reports 
c)    Risks 
d)    Schedule 
18    Which of these activities provides the biggest potential cost saving from the use of 
CAST? 
a)    Test management 
b)    Test design 
c)    Test execution 
d)    Test planning 
 
19    Which of the following is NOT a white box technique? 
a)    Statement testing 
b)    Path testing 
c)    Data flow testing 
d)    State transition testing 
 
20    An important benefit of code inspections is that they: 
a)    enable the code to be tested before the execution environment is ready. 
b)    can be performed by the person who wrote the code. 
c)    can be performed by inexperienced staff. 
d)    are cheap to perform. 
 
21    Which of the following is the best source of Expected Outcomes for User Acceptance 
Test scripts? 
a)    Actual results 



106 

 

b)    Program specification 
c)    User requirements 
d)    System specification 
 
22    What is the main difference between a walkthrough and an inspection? 
a)    An inspection is lead by the author, whilst a walkthrough is lead by a trained moderator. 
b)    An inspection has a trained leader, whilst a walkthrough has no leader. 
c)    Authors are not present during inspections, whilst they are during walkthroughs. 
d)    A walkthrough is lead by the author, whilst an inspection is lead by a trained moderator. 
 
23    Which one of the following describes the major benefit of verification early in the life 
cycle? 
a)    It allows the identification of changes in user requirements. 
b)    It facilitates timely set up of the test environment. 
c)    It reduces defect multiplication. 
d)    It allows testers to become involved early in the project. 
 
24    Integration testing in the small: 
a)    tests the individual components that have been developed. 
b)    tests interactions between modules or subsystems. 
c)    only uses components that form part of the live system. 
d)    tests interfaces to other systems. 
 
25    Static analysis is best described as: 
a)    the analysis of batch programs. 
b)    the reviewing of test plans. 
c)    the analysis of program code. 
d)    the use of black box testing. 
 
26    Alpha testing is: 
a)    post-release testing by end user representatives at the developer’s site. 
b)    the first testing that is performed. 
c)    pre-release testing by end user representatives at the developer’s site. 
d)    pre-release testing by end user representatives at their sites. 
 
27    A failure is: 
a)    found in the software; the result of an error. 
b)    departure from specified behavior. 
c)    an incorrect step, process or data definition in a computer program. 
d)    a human action that produces an incorrect result. 
28    The most important thing about early test design is that it: 
a)    makes test preparation easier. 
b)    means inspections are not required. 
c)    can prevent fault multiplication. 
d)    will find all faults. 
 
29    Which of the following statements about reviews is true? 
a)    Reviews cannot be performed on user requirements specifications. 
b)    Reviews are the least effective way of testing code. 



107 

 

c)    Reviews are unlikely to find faults in test plans. 
d)    Reviews should be performed on specifications, code, and test plans. 
 
30    Test cases are designed during: 
a)    test recording. 
b)    test planning. 
c)    test configuration. 
d)    test specification. 
 
31    A configuration management system would NOT normally provide: 
a)    linkage of customer requirements to version numbers. 
b)    facilities to compare test results with expected results. 
c)    the precise differences in versions of software component source code. 
d)    restricted access to the source code library. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answers for above questions: 
Question Answer 
1   A 
2   A 
3   C 
4   A 
5   A 
6   C 
7   B 
8   D 
9   A 
10   B 
11   A 
12   D 
13   D 
14   A 
15   D 
16   A 

17   B 
18   C 
19   D 
20   A 
21   C 
22   D 
23   C 
24   B 
25   C 
26   C 
27   B 
28   C 
29   D 
30   D 
31   B 



108 

 

EXERCISE 1 [GOOGLE HOMEPAGE TEST] 

Find more than 20 defects (layout inconsistencies, spelling errors, and the like) in the image 
below: 

 

The image is from Google Homepage (Long time ago). The current actual Google Homepage 
looks different from the image but the defects in the image are still valid and timeless. The 
image was edited using GIMP, and HTML using Notepad++. 

And, yes, there are indeed more than twenty defects!  

EXERCISE 2 [FAILED SHOT TEST] 

A woman fired a shot at a man with her gun but the man did not die. List the possible 
reasons for the man not dying. 

There are numerous possibilities above and this exercise helps a tester identify possible test 
scenarios/cases. 

EXERCISE 3 [ROOM TEST] 

List the defects/enhancements in the room you are in right now. [For example: there are 
dirty marks on the wall; the lighting could be better] 

This exercise is to test and help develop your observance.  

EXERCISE 4 [BRUSHING TEETH TEST] 

http://34.94.91.25/wp-content/uploads/2010/12/google_defects.jpg


109 

 

An alien meets you and it asks you to teach it how to brush its teeth. Assume that the alien 
has teeth exactly like yours and is as smart as you but it needs a clear step-by-step 
instruction. List the steps. Be as detailed as you can. [Example: hold the toothpaste with 
your left hand; turn the cap anti-clockwise]  

 

EXERCISE 5 [BALLPOINT PEN TEST] 

Hold a ballpoint pen. Identify the types of testing you would perform on it to make sure that 
it is of the highest quality. 

One can in fact associate almost all kinds of software testing types while testing a pen. 

EXERCISE 6 [MOUSE TEST] 

Similar to the Ballpoint Pen Test above, identify the types of testing you would perform on a 
mouse to make sure that it is of the highest quality. 

Of course, we mean a computer mouse, and not the animal mouse, when we say ‘mouse’ 
here. 

EXERCISE 7 [ADDITION TEST] 

There is a simple program with the following items: 

o Input Box A 

o Input Box B 

o ADD button 

o Result Text Box [=A+B] 

 

Identify all the test cases for the program. [Example: press the Add button without entering 
anything in Input Box A and B] 

 

EXERCISE 8 FINDING DEFECTS 

As a software tester, what do you do? Of course, testing the software, you would 
say………Okay, can you find out defects on the page shown below? 



110 

 

 
 
 
 
Here is how you can judge yourself: 
If you find:

0 – 4 defects => Poor 
5 – 6 defects => Average 
7 – 8 defects => Good 

9 – 10 defects => Excellent 
10+ defects => Best tester! 

(Mind well, you are the judge and you need to count on valid defects) 

Here is one example of a defect as a hint: 
– CONFIRM PASSWORD FIELD DOES NOT SHOW CONTENT IN ENCRYPTED MODE. 
 
 
 
 

EXERCISE: FINDING DEFECTS ANSWERS 

 
Defects : 

1. The user Id field accepts special characters. 
2. Confirm password field does not show content in encrypted mode. 
3. The name field does not seem to have any validation for number of characters. 
4. Captcha is not at all readable. 
5. There is no way user can reload the captcha. 
6. Register button should be at bottom rather than on side. 
7. Register button’s label has “r” instead of “R”. 
8. There is no cancel button available if user wants to cancel the procedure.. 
9. There is no close button available if user wants to close the page. 
10. The page title show wrong spelling of Registration. 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2014/08/testing-Exercise-1.jpg


111 

 

11. Password selection guideline should be provided like the password should be alpha 
numeric or password strength factor should be present. 

12. Page title should be New User Registration rather than New Registration. 
13. Field length and labels should be same for the whole page / form. 
14. The country field should by default show “Select” rather than selecting a value 

default. 
 
 
 

 

EXERCISE 9 WRITING TEST SCENARIOS 

We do not only test, but we also develop test scenarios too. There is a real-life scenario and 
you need to write test ideas for the same. 

Again, we do not want a step-by-step procedure; we want ideas with a brief description. 

Write test ideas for this Scenario: You are at the grocery store’s checkout counter. You have 
bought five items (x, y, z, a, and b). You make payment and move to the EXIT door. 
 
Example Test ideas as a hint: 

1. If the checkout counter is humanless, scan all the five items, scan your card and 
make payment. 

2. The scanners should scan proper relevant information. 
 
 
 

EXERCISE: WRITING TEST SCENARIOS ANSWERS 

1. If the checkout counter is human less, scan all the five items, scan your card and 
make payment. 

2. The scanners should scan proper relevant information. 
3. If the checkout counter is human processed, a person to help should be available. 
4. All the items bought should have barcode so that they are scan able. 
5. All the items should have MRP printed and scan able so that the software can read it 
6. The relevant software and printers should be in working condition 
7. Once all items scanned, a bill should be generated and given to the customer. 
8. For payment multiple options should be allowed, cash, card (credit card, debit card), 

coupons (meal passes) etc. 
9. If payment is done by card, the transactions should be secured. 
10. If payment is done by cash, counter person must have enough cash to balance the 

bill. 
11. If any of the item bought is not scannable, the counter person should be able to help 

customer. 
12. Customer should be able to see the EXIT sign easily 
13. At EXIT, there should be some check that customer carries only the bought and billed 

items. 



112 

 

 
 
 

 

EXERCISE 10 DEFECT REPORTING 

As a tester, the best part of the job is to report defects. We would like to know how you 
would report the following defect (you can decide upon the fields you want to include while 
reporting the defect in the best way). 

Write a detailed defect report for this sample defect: After logging into Gmail, it navigates 
to Google.com 
No hint here. :) Just write a good and complete defect report.  
 
 
 

EXERCISE: DEFECT REPORTING ANSWERS 

Defect: After logging into Gmail, it navigates to Google.com 
Title – Gmail login navigates to Google home page rather than mail inbox. 
Severity : High 
Priority : Critical 
Observed on : Windows – FF x.x and IE x.x and Mac – Chrome x 
Module : Login 

Reproduction Steps : 
1. Launch a Gmail link with compatible 
browsers. 
2. Click on Sign in button in link, Gmail login 
window screen is appeared. 
3. Enter a valid login credentials. 
4. Click on SIGN IN button, 

Analysis : 
Defect Status : Open 
Assigned to : Project Manager x.x 

 
 
 

EXERCISE 11 PROVIDING SUGGESTIONS 

Providing suggestions to improve quality or user experience is the extension of a Software 
Testing job. So why not try that? Can you tell us how user experience can be improved for 
the following sign-in page? 



113 

 

 
Here is an example suggestion as a hint: 
– Rather than asking the customer to select whether he is a new customer, the system 
should check the status of the customer based on the e-mail address or user id he had 
provided. 
 
 
 
 

EXERCISE: PROVIDING SUGGESTIONS ANSWERS 

1. Rather than the question “What is your e-mail address?”, it should be simply “e-mail 
address”. 

2. Sign in facility should be available via e-mail as well as userID. 
3. Rather than asking customer to select whether he is new customer, system should 

check status of customer based on e-mail address or userID he had provided. 
4. Most of the time, end user does not concern about info that system is using secure 

server.it is assumed by default. So the button should be simply Sign In. 
5. Help link should be available for any customer who is stuck due to any reason. 
6. Page title should be backgrounded. 
7. A close button should be available. 
8. A Cancel button should be available. 

 

EXERCISE 12 BUG HUNTING 

One of the trainee developers has developed a text pad kind of application. Below is one of 
the screenshots of the application. Can you list out bugs/issues, which the trainee 
developer should take care of? 
 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2014/08/testing-Exercise-2.jpg


114 

 

 
Sample Answer as a hint: 
The name of the application does not appear in Title space. 

 

 

 

 

 

 

EXERCISE: BUG HUNTING ANSWERS 

1. The name of application does not appear on Title space. 
2. The title space seems cutting on right side where close button is placed. 
3. No button for minimizing. 
4. The Edit menu should be displayed in a ways that the menu’s left wall should be 

aligned to Edit option. 
5. Copy option is enabled by default. 
6. For Undo the generalized shortcut key is Ctrl+Z and its difficult for users to get used 

to with different keys for the default action like Undo. 
7. For Cut, Copy and Paste, no shortcut keys have been displayed / provided. 
8. The Title bar does not show application logo. 
9. The Title should be centralist. 
10. The Edit menu seems to be incomplete at end. 

 

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2014/09/testing-qa-exercise-2.jpg


115 

 

 

EXERCISE 13 THINK TESTING 

Food for the brain – you need to think now, really. :) 

We are living in the Eco Era, right? Our question is also related to Green Product – 

HOW WOULD YOU TEST A 5 KG CAPACITY GROCERY SHOPPING PAPER BAG? 
VERY SIMPLE? START WRITING UP YOUR TEST IDEAS IN TERMS OF Test Scenarios. 
 

Sample Answer as a hint: 
I would put 5KG package rice in it and will try to accommodate a 150 gr biscuit packet too as 
I do not have another bag to put the biscuit packet. Will like to see whether the paper bag 
(whose capacity is 5 kg) able to carry just extra weight till I travel for 10 minutes? 

EXERCISE: THINK TESTING ANSWERS 

1. I would put 5KG package rice in it and will try to accommodate a 150 gms biscuit 
packet too as I do not have another bag to put the biscuit packet. Will like to see 
whether the paper bag (whose capacity is 5 kgs) able to carry just extra weight till I 
travel for 10 mins? 

2. Put exactly 5 KG wheat flour packet in it and carry it for half an hour while walking 
around. 

3. Put 10 items which sums up as 5 kg in terms of weight. 
4. Test scenarios for checking quality of paper used for the bag. 
5. Test scenarios to check quality of handles of the bag. 
6. Put 5 KG package of rice in the bag and just throw it in car dickey. Is the bag able to 

tolerate that punch? 
7. Test scenarios of bag being kids friendly (what if child starts chewing it if he finds it 

on the floor) 
8. Test scenarios to check overall look of bag. 
9. Try to put 8 kG package of floor in it, how does it react? 
10. Is the bag paper writable? I mean, if someone wants he should be able to label it. 
11. What if the paper bag gets wet? 
12. What if you try to accommodate it in the purse or another bag, by folding it? 

 

 

 

 

 

 



116 

 

 

EXERCISE 14 SHOW DEFECT REPORTING SKILLS 

Defect reporting for the following issue: 
Requirement: After registering to the site – example.com, a new user receives an e-mail, 
which contains a link to reset the default set password. 
Issue: When the user registers via mobile, he receives the e-mail two times. 
Log a defect report for this issue with all required defect report fields. 
 
 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………………… 
 
 
 
 

EXERCISE 15 ROLE OF AN END-USER 

As a tester, we do not test the application product. We do play the role of an end-user. We 
do try to generate real-time scenarios where the end-user might not behave the way they 
are expected. How the product would respond, that is what we test. 

Let’s reverse the process to a small degree – 

AS AN END-USER, HOW WOULD YOU LIKE TO MODIFY THE ATM (AUTOMATED TELLER 
MACHINE) SO THAT IT CAN BE MORE BENEFICIAL?  
 
DON’T PROVIDE JUST IDEAS, PROVIDE RELEVANT REASONS TOO. 
 
Sample Answer as a hint: 

I would suggest removing “the cash withdrawal default setting” at the end of the 
transaction as most of the time, we do not want to set the same cash every time and so we 



117 

 

do not like to set it. It unnecessarily wastes time where you have to push NO and will have 
to wait for the debit card. 

 

EXERCISE: ROLE OF AN END USER ANSWERS 

1. I would suggest to remove “the cash withdrawal default setting” at the end of 
transaction as most of the time, we do not want to set the same cash every time and 
so we do not like to set it. It unnecessarily wastes time where you have to push NO 
and will have to wait for the debit card. 

2. I would suggest to include face/finger based authorization rather than password/pin 
because password/pin can be hacked but face cannot be :) 

3. The ATM machine should have card scanner rather than card insertion facility as 
sometimes the faulty machines does not work properly and card gets stuck. 

4. The ATM machine should not provide facility for printed statement as it’s a waste of 
paper. If a person really needs it, he can manage from bank or via online banking. 
Printed statement is a waste of paper as 95% of user throws it immediately. We 
need to be more environmental conscious and should see the balance or statement 
online rather than taking print of every transaction. 

  



118 

 

TESTING CHALLENGE #1 - WEB TESTING 

What to do 

Identify at least 10 (max 18) tests required for the scenario below,  based on the data you 
input in the First Name field. 

What not to test for 

Different browsers, extremely big requests, "nasty words", browser zoom in and out. Do not 
use automation tools. The server will cut access at over 30 requests per second per IP. 

Specification 

The user has to fill in the required data in order to get access, as a standard user in a forum. 

Only the First Name field can be tested right now. The field has a max length of 30. 

 

Confirmation message 

Thank you, Gheorghe, …………… from Norway. 

A message will be sent shortly to your e-mail address: me@whatyouknow.com with your 
password. 

Your username is Gheorghe . 

 

 

Country Norw ay                                 Email me@w haty 

First Name*                    Last Name Gheorghe  

 
 Hint: Test for input Other chars then alphabetic 

 

TESTING CHALLENGE #1 - WEB TESTING - ANSWERS 

*** 10 possible checks: 

 Space values at the beginning 

 Space values at the end 

 Non ASCII 

 Maximum values 

 Space 

 Space in the middle 

 More than maximum values 

 Minimum value 

 Other chars then alphabetic 

 Average value 

 

 

 

 

 



119 

 

 

 

 

 

 

 

 

 

 

TESTING CHALLENGE #2 - GENERATE TESTING DATA 

What to do 
Create 5 valid data input for the specification below. 
This challenge emphasizes the skill required to create your own test data. 
 
Specification 
Each person born in Romania receives a unique identification number. 
The number has 13 digits, e.g. 1234567890123 
 
What the digits represent: 

• First digit – the gender: male or female 
o 1 or 2 – born between 1 January 1900 and 31 December 1999 
o 3 or 4 - born between 1 January 1800 and 31 December 1899 
o 5 or 6 - born between 1 January 2000 and 31 December 2099 
o 7 or 8 – Foreign residents in Romania. 
o 9 - For non-residents 

• Next 2 digits – last 2 digits of the year of birth (e.g. born in 1980 then it will 80 ) 
• Next 2 digits – month of birth (01 to 12) 
• Next 2 digits - date of birth (01 to 31 depending on the month of birth) 
• Next 2 digits – area code (valid codes are 01 to 52) 
• Next 3 digits – order number 
• Last digit control number is created by: 
Take the first 12 numbers of the CNP: 123456789012 and multiply each number with the 
corresponding position number from this 
string: 279146358279 like: 1 * 2 + 2 * 7 + 3 * 9 + 4 * 1+…..+ 12 * 9= X 
You divide X by 11 the rest obtained if it is 10 then the last digit is 1 otherwise it equals 

the rest obtained 

 

List 5 correct CNP numbers: >>>>>>>>>>> 

1) …………………………………………………………………… 

2) ………………………………………………………………….. 

3) ………………………………………………………………….. 

4) ………………………………………………………………….. 



120 

 

5) …………………………………………………………………… 

 

 

  



121 

 

TESTING CHALLENGE #3 - SCENARIO TESTING 

Why this challenge? 

As testers we have to come up with scenarios. We have to imagine them based on the 
information we have. 
Scenarios are like stories. This challenge helps you practice your story telling. 

 
Your challenge is to imagine and write a story, that has meaning, with the words bellow. 
You have 20 minutes to do so.  

Your words are: 

Developer     Compatibility     Alpha Beta Testing  Software Crafsmanship 
 

 

What scenario can you think of with the given words? Write below! 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 



122 

 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

………………………………………………………………………………………………………………………

 


	TABLE OF CONTENTS
	1. Goal of Manual Testing
	2. Introduction to Software testing and Software development
	What is software testing:
	Software testing types:
	Testing Methods:
	Testing Approaches:
	Testing Levels:
	Types of Black Box Testing:
	Testing Artifacts:
	What is Software Development Life Cycle (SDLC)?
	A typical Software Development Life Cycle (SDLC) consists of the following phases:
	Types of Software Development Life Cycle Models:
	Other related Software Development LifeCycle models are:

	3. Software Testing as a Career Path (Skills, Salary, Growth)
	4. Software Testing Principles: Learn with Examples
	The 7 basic Principles of software testing:

	5. Manual Testing Tutorial for Beginners: Concepts, Types, Tool
	Manual Testing Process:
	Advantages of Manual Testing:
	Disadvantages of Manual Testing
	Tips for better Manual Testing

	What is Software Testing Life Cycle (STLC)
	What is the difference between SDLC & STLC (SDLC vs STLC)? >>>
	What Is Bug Life Cycle or Defect Life Cycle In Software Testing

	Difference between defect, bug, error and failure
	Common types of Software Testing:

	6. Automation testing tutorial: what is, process, benefits & tools;
	Software test automation overview
	Software test automation strategy
	Software test automation and it’s return of investment (roi)
	Test cases to automate
	Test cases not to automate
	Automated Testing Process/ How do we automate?
	Example:

	Framework for Automation
	How to Choose an Automation Tool?
	Automation Testing Tools

	7. Automation Testing Vs. Manual Testing: What's the Difference?
	What are the different test design techniques?
	Static Test Design Techniques
	Dynamic Test Design Techniques


	8. What is regression testing? Definition, tools, method, and example
	Regression Test Overview
	Exercise:

	When To Perform This Test?
	Why The Regression Test?
	Types Of Regression Testing:
	How Much Regression Is Required?
	What Do We Do In Regression Check?
	Regression Testing Techniques
	How To Select A Regression Test Suite?
	How To Perform Regression Testing?
	Exercise 1:
	Exersice 2:

	Basic Steps to Perform Regression Tests
	Regression In Agile
	Regression Of GUI Application
	Regression Test Plan Template (TOC)
	#1) Document History:
	#2) References:
	#3) Regression Test Plan:

	Exercise:
	Example:
	Example:

	What is the difference between Regression And Retesting
	Exercise 1:
	Example 1:
	Some other Differences between Regression and Retesting:



	9. What is a Test Scenario?
	Exercise 1:
	Why do we write Test Scenario?
	Example 1: Best practices of creating a Test Scenario

	What is a Test Case?
	Examples:

	Why do we write Test Cases?
	Example 1: Best practices of Creating Test cases


	10. How to write a Test Case
	ExercIse: Case template 1
	Exercise: Case template 2
	List of Web Application Testing Example Test Cases/scenarios.
	Exercise: General Test Scenarios
	Exercise: GUI And Usability Test Scenarios
	Exercise: Test Scenarios For Filter Criteria
	Exercise: Test Scenarios For Result Grid
	Exercise: Test Scenarios For A Window
	Exercise: Database Testing Test Scenarios
	Exercise: Test Scenarios For Image Upload Functionality
	Exercise: Test Scenarios For Sending Emails
	Exercise: Test Scenarios For Excel Export Functionality
	Exercise: Performance Testing Test Scenarios
	Exercise: Security Testing Test Scenarios


	11. Software Test Estimation Techniques: step by step guide
	Brief Description Of The Test Estimation Process
	The Basic Prerequisites Of The Test Estimation Process
	How and where we use these techniques:
	Details Of The Test Point Estimation Technique
	Test Estimation Exercise:

	Use Case Point Estimation Method
	Exercise:

	Work-Phase Breakdown Technique
	Exercise:

	Factors Affecting Software Test Estimation, and General Tips to Estimate Accurately:

	12. How to write a test plan
	Test Plan Types
	Test Plan Template
	Test Plan Guidelines
	Example Test plan:


	13. Aditional Exersizes


